JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PYTHAGOREAN-HODOGRAPH CUBICS AND GEOMETRIC HERMITE INTERPOLATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : East Asian mathematical journal
  • Volume 28, Issue 1,  2012, pp.13-23
  • Publisher : Youngnam Mathematical Society
  • DOI : 10.7858/eamj.2012.28.1.013
 Title & Authors
PYTHAGOREAN-HODOGRAPH CUBICS AND GEOMETRIC HERMITE INTERPOLATION
Lee, Hyun-Chol; Lee, Sun-Hong;
  PDF(new window)
 Abstract
In this paper, we present the geometric Hermite interpolation for planar Pythagorean-hodograph cubics for some general Hermite data.
 Keywords
Pythagorean-hodograph curves;Pythagorean-hodograph cubics;geometric Hermite interpolation;
 Language
English
 Cited by
 References
1.
R. T. Farouki, Pythagorean-hodograph curves in practical use, Geometry processing for design and manufacturing, R. E. Barnhill (ED.), Philadelphia: SIAM: 1992, 3-33

2.
R. T. Farouki, The conformal map $z{\rightarrow}z^2$ of the hodograph plane, Computer Aided Geometric Design 11 (1994), 363-390 crossref(new window)

3.
R. T. Farouki, The elastic bending energy of Pythagorean curves, Computer Aided Geometric Design 13 (1996), 227-241 crossref(new window)

4.
R. T. Farouki, Pythagorean-hodograph quintic transition curves of nonotone curvature, Computer-Aided Design 29 (1997), 606-610

5.
R. T. Farouki, J. Manjunathaiah, D. Nichlas, G. F. Yuan, and S. Jee, Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves, Computer-Aided Design 30 (1998), 631-640 crossref(new window)

6.
R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM Journal of Research and Development 34 (1990), 726-752

7.
J. Kosinka, and B. Juttler, $G^1$ Hermite interpolation by Minkowski Pythagorean hodograph cubics, Computer Aided Geometric Design 23 (2006), 401-418 crossref(new window)

8.
D. Marsh, Applied Geometry for Computer Graphics and CAD, Springer, 2005, 135-160

9.
D. S. Meek and D. J. Walton, Geometric Hermite interpolation with Tschirnhausen cubic, Journal of Computational and Applied Mathematics 81 (1997), 299-309 crossref(new window)

10.
F. Pelosi, R. T. Farouki, C. Mannai, and A. Sestini, Geometric Hermite interpolation by spatial Pythagorean hodograph cubics, Carla Manni and Alessandra Sestini Advances in Computataional Mathematiec 22 (2005), 325-352

11.
D. J. Walton and D. S. Meek, A Pythagorean hodograph quintic spiral, Computer Aided Geometric Design 28 (1996), 643-650