JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PROXIMAL POINTS METHODS FOR GENERALIZED IMPLICIT VARIATIONAL-LIKE INCLUSIONS IN BANACH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : East Asian mathematical journal
  • Volume 28, Issue 1,  2012, pp.37-47
  • Publisher : Youngnam Mathematical Society
  • DOI : 10.7858/eamj.2012.28.1.037
 Title & Authors
PROXIMAL POINTS METHODS FOR GENERALIZED IMPLICIT VARIATIONAL-LIKE INCLUSIONS IN BANACH SPACES
He, Xin-Feng; Lou, Jian; He, Zhen;
  PDF(new window)
 Abstract
In this paper, we study generalized implicit variational-like inclusions and -proximal operator equations in Banach spaces. It is established that generalized implicit variational-like inclusions in real Banach spaces are equivalent to fixed point problems. We also establish relationship between generalized implicit variational-like inclusions and -proximal operator equations. This equivalence is used to suggest a iterative algorithm for solving -proximal operator equations.
 Keywords
generalized implicit variational-like inclusions;-Proximal operator;Algorithm;-proximal operator equations;
 Language
English
 Cited by
 References
1.
R. P. Agarwal, Y. J. Cho and N. J. Huang, Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. Math. Lett. 13(6) (2000), 19-24.

2.
R. . Agarwal, N. J. Huang and Y. J. Cho, Generalized nonlinear mixed implicit quasi-variational inclusions with setvalued mappings, J. Inequal. Appl. 7(6) (2002), 807-828.

3.
R. Ahmad, A. H. Siddiqi and Z. Khan, Proximal point algorithm for generalized multivalued nonlinear quasivariational- like inclusions in Banach spaces, Appl. Math. Comput. 163 (2005), 295-308. crossref(new window)

4.
S. S. Chang, Y. J. Cho and H. Y. Zhou, Iterative Methods for Nonlinear Operator Equations in Banach Spaces, Nova Sci. New York, 2002.

5.
J. Y. Chen, N. C. Wong and J. C. Yao, Algorithm for generalized co-complementarity problems in Banach spaces, Comput. Math. Appl. 43(1) (2002), 49-54. crossref(new window)

6.
X. P. Ding and C. L. Lou, Perturbed proximal point algorithms for general quasi-variational-like inclusions, J. Comput. Appl. Math. 210 (2000), 153-165.

7.
J. Lou, X. F. He and Z. He, Iterative methods for solving a system of variational inclusions involving H-${\eta}$-monotone operators in Banach spaces, Computers and Mathematics with Applications, Computers and Mathematics with Applications 55 (2008), 1832-1841. crossref(new window)

8.
X. F. He, J. Lou and Z. He, Iterative methods for solving variational inclusions in Banach spaces, Journal of Computational and Applied Mathematics 203(1) (2007), 80-86. crossref(new window)

9.
R. Ahmad and A. H. Siddiqi, Mixed variational-like inclusions and $J^{\eta}$-proximal operator equations in Banach spaces, J. Math. Anal. Appl. 327 (2007), 515-524. crossref(new window)

10.
N. J. Huang, Generlaized nonlinear variational inclusions with non-compact valued mappings, Appl. Math. Lett. 9(3) (1996), 25-29.

11.
Y. P. Fang and N. J.Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17 (2004), 647-653. crossref(new window)

12.
K. R. Kazmi and F. A. Khan, Sensitivity analysis for parametric generalized implicit quasi-variational-like inclusions involving P-${\eta}$-accretive mappings, J. Math. Anal. Appl. 337 (2008), 1198-1210. crossref(new window)

13.
S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. crossref(new window)

14.
H. Y. Lan, ($A,{\eta}$)-Accretive mappings and set-valued variational inclusions with relaxed cocoercive mappings in Banach spaces, Appl. Math. Lett. 20 (2007), 571-577. crossref(new window)