JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON INTERVAL VALUED FUZZY h-IDEALS IN HEMIRINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : East Asian mathematical journal
  • Volume 28, Issue 1,  2012, pp.49-62
  • Publisher : Youngnam Mathematical Society
  • DOI : 10.7858/eamj.2012.28.1.049
 Title & Authors
ON INTERVAL VALUED FUZZY h-IDEALS IN HEMIRINGS
Shabir, Muhammad; Malik, Noshin; Mahmood, Tahir;
  PDF(new window)
 Abstract
In this paper we discuss some results associated with interval valued fuzzy h-ideals of hemirings and characterize hemirings by the properties of their interval valued fuzzy h-ideals.
 Keywords
Hemirings;fuzzy h-ideals;interval valued fuzzy h-ideals;h-hemiregular;
 Language
English
 Cited by
 References
1.
A. W. Aho and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison Wesley, Reading, MA, 1979.

2.
J. Ahsan, K. Saifullah and M. F. Khan, Fuzzy Semirings, Fuzzy Sets Syst. 60 (1993), 309-320. crossref(new window)

3.
J. Ahsan, Semirings characterized by their fuzzy ideals, J. Fuzzy Math. 6 (1998), 181-192.

4.
L. B. Beasley and N. G. Pullman, Operators that preserves semiring matrix functions, Linear Algebra Appl. 99 (1988), 199-216. crossref(new window)

5.
L. B. Beasley and N. G. Pullman, Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl. 160 (1992), 217-229 crossref(new window)

6.
R. Biswas, Rosenfeld's fuzzy subgroups with intervalued membership function, Fuzzy sets and systems 63 (1994), 87-90. crossref(new window)

7.
W. A. Dudek, M. Shabir and R. Anjum, Characterizations of Hemirings by their hideals, Comp. and Maths. with Appl. 59 (2010), 3167-3179. crossref(new window)

8.
S. Ghosh, Matrices over semirings, Inform. Sci. 90 (1996), 221-230. crossref(new window)

9.
K. Glazek, A guide to litrature on semirings and their applications in mathematics and information sciences: with complete bibliography, Kluwer Acad. Publ. Nederland, 2002.

10.
J. S. Golan, Semirings and their applications, Kluwer Acad. Publ. 1999.

11.
U. Hebisch and H. J. Weinert, Semirings: Algebraic Theory and Applications in the Computer Science, World Scientific, 1998.

12.
M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6 (1958), 321.

13.
K. Iizuka, On Jacobson radical of a semiring, Tohoku Math. J. 11 (1959), 409-421. crossref(new window)

14.
D. R. La Torre, On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12 (1965), 219-226.

15.
X. P. Li and G. J.Wang, The $S_H$ interval valued fuzzy subgroups, Fuzzy sets and systems 112 (2000), 319-325. crossref(new window)

16.
J. N. Mordeson and D. S. Malik, Fuzzy Automata and Languages, Theory and Applications, Computational Mathematics Series, Chapman and Hall/CRC, Boca Raton 2002.

17.
A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. crossref(new window)

18.
M. Shabir and T. Mahmood, Characterizations of Hemirings by Interval Valued fuzzy ideals, Quasigroups and Related Systems 19 (2011), 101-113.

19.
G. Sun, Y. Yin and Y. Li, Interval valued fuzzy h-ideals of hemirings, Int. Math. Forum 5 (2010), 545-556.

20.
W. Wechler, The concept of fuzziness in automata and language theory, Akademic verlog, Berlin, 1978.

21.
Xueling M. A. and J. Zhan, On fuzzy h-ideals of hemirings, J. Syst. Sci. and Complexity 20 (2007), 470-478. crossref(new window)

22.
Y. Q. Yin and H. Li, The charatecrizations of h-hemiregular hemirings and h-intra-hemiregular hemirings, Inform. Sci. 178 (2008), 3451-3464. crossref(new window)

23.
H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934), 914-920 crossref(new window)

24.
L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965), 338-353. crossref(new window)