JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DEALTERNATING NUMBERS AND CLASSICAL LINK INVARIANTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : East Asian mathematical journal
  • Volume 28, Issue 1,  2012, pp.93-99
  • Publisher : Youngnam Mathematical Society
  • DOI : 10.7858/eamj.2012.28.1.093
 Title & Authors
DEALTERNATING NUMBERS AND CLASSICAL LINK INVARIANTS
Kim, Myung-Jae; Lee, Dong-Hee; Kim, Dong-Seok;
  PDF(new window)
 Abstract
Dealternating numbers and alternation numbers measure the distance between the link and an alternating links. In the present article, we show that classical link invariants; the determinant, signature and Alexander polynomial can not detect the almost alternativity of links.
 Keywords
 Language
English
 Cited by
 References
1.
T. Abe, An estimation of the alternation number of a torus knot, J. Knot Theory Ramifications 18(3) (2009), 363-379. crossref(new window)

2.
C. Adams, Almost alternating links, Topology and its applications 46 (1992), 151-165. crossref(new window)

3.
C. Adams, The knot book, W. H. Freeman and Company. 1994.

4.
T. Abe and K. Kishimoto, The dealternation number and the alternation number of a closed 3-braid, J. Knot Theory Ramifications 19(9) (2010), 1157-1181. crossref(new window)

5.
J. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational problemas in abstract algebra, Pergamon Press, 1969.

6.
R. Crowell, Genus of alternating link types, Ann. of Math. 69 (1959), 258-275. crossref(new window)

7.
R. H. Fox, Some problems in knot theory, Prentice-Hall, 1962.

8.
C. McA. Gordon and R. Litherland, On the signature of a link, Invent. Math. 47 (1987), 53-69.

9.
J. Hoste, M. Thistlethwaite and J. Weeks, The First 1701936 Knots, Math. Intell. 20 (1998), 33-48. crossref(new window)

10.
T. Kanenobu, Upper bound for the alternation number of a torus knot, Topology Appl., in Press.

11.
A. Kawauchi, On alternation numbers of links, Topology Appl., in Press.

12.
D. Kim and J. Lee, On pretzel links, Bull. of Aust. Math. Soc. 75(2) (2007), 253-271. crossref(new window)

13.
W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), 37-44. crossref(new window)

14.
K. Murasugi, On the Alexander polynomial of alternating algebraic knots, J. of Aus. Math. Soc. 39 (1985), 317-333. crossref(new window)

15.
T. Van Zandt. PSTricks: PostScript macros for generic TEX. Available at ftp://ftp.princeton.edu/pub/tvz/.