JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STABILIZATION FOR THE VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH A NONLINEAR SOURCE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STABILIZATION FOR THE VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH A NONLINEAR SOURCE
Kim, Daewook;
  PDF(new window)
 Abstract
In this paper, we study the viscoelastic Kirchhoff type equation with a nonlinear source d{\tau}+{\mid}u{\mid}^{\gamma}u
 Keywords
viscoelastic Kirchhoff type equation;energy decay rate;energy functional;smallness condition;
 Language
English
 Cited by
 References
1.
F. Li, Z. Zhao and Y. Chen, Global existence and uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, J Nonlinear Analysis: Real World Applications, 12 (2011), 1759-1773.

2.
F. Li and Z. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping, Nonlinear Analysis: Real World Applications, 74 (2011), 3468-3477.

3.
C. F. Carrier, On the vibration problem of elastic string, J. Appl. Math., 3 (1945), 151-165.

4.
R. W. Dickey, The initial value problem for a nonlinear semi-infinite string, Proc. Roy. Soc. Edinburgh Vol. 82 (1978), 19-26. crossref(new window)

5.
S. Y. Lee and C. D. Mote, Vibration control of an axially moving string by boundary control, ASME J. Dyna. Syst., Meas., Control, 118 (1996), 66-74. crossref(new window)

6.
Y. Li, D. Aron and C. D. Rahn, Adaptive vibration isolation for axially moving strings: Theory and experiment, Automatica, 38 (1996), 379-390.

7.
J. L. Lions, On some question on boundary value problem of mathematical physics, 1, in: G.M. de La Penha, L. A. Medeiros (Eds.), Contemporary Developments of Continuum Mechanics and Partial Differential Equations, North-Holland, Amsterdam, 1978.

8.
M. Aassila and D. Kaya, On Local Solutions of a Mildly Degenerate Hyperbolic Equation, Journal of Mathematical Analysis and Applications, 238 (1999), 418-428. crossref(new window)

9.
F. Pellicano and F. Vestroni, Complex dynamics of high-speed axially moving systems, Journal of Sound and Vibration, 258 (2002), 31-44. crossref(new window)

10.
G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig, 1983.

11.
G. Kirchhoff, Asymptotic behavior of a nonlinear Kirchhoff type equation with spring boundary conditions, Computers and Mathematics with Applications 62 (2011), 3004-3014. crossref(new window)

12.
G. Kirchhoff, Stabilization for the Kirchhoff type equation from an axially moving heterogeneous string modeling with boundary feedback control, Nonlinear Analysis: Theory, Methods and Applications 75 (2012), 3598-3617.

13.
J. Limaco, H. R. Clark, and L. A. Medeiros, Vibrations of elastic string with nonhomogeneous material, Journal of Mathematical Analysis and Applications 344 (2008), 806-820. crossref(new window)