JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVERGENCE OF NEWTON`S METHOD FOR SOLVING A NONLINEAR MATRIX EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONVERGENCE OF NEWTON`S METHOD FOR SOLVING A NONLINEAR MATRIX EQUATION
Meng, Jie; Lee, Hyun-Jung; Kim, Hyun-Min;
  PDF(new window)
 Abstract
We consider the nonlinear matrix equation $X^p+AX^qB+CXD+E
 Keywords
Matrix equation;Elementwise nonnegative solution;Newton`s method;M-matrix;
 Language
English
 Cited by
 References
1.
W.N. Anderson, G.D. Kleindorfer, P.R. Kleindorfer, M.B. Woodroofe, Consistent estimates of the parameters of a linear system, Ann. Math. Statist. 40 (1969) 2064-2075. crossref(new window)

2.
D.A. Bini, G. Latouche, B. Meini, Numerical methods for structured Markov chains, Oxford University Press, 2005.

3.
Ph. Bougerol, Kalman filtering with random coeffcients and contractions, SIAM J. Control Optim. 31 (1993) 942-959. crossref(new window)

4.
G.J. Davis, Numerical solution of a quadratic matrix equation, SIAM J. Sci. Statist. Comput. 2 (2) (1981) 164-175. crossref(new window)

5.
G.J. Davis, Algorithm 598: an algorithm to compute solvent of the matrix equation $AX^2$ + BX + C = 0, ACM Trans. Math. Software 9 (2) (1983) 341-345.

6.
X. Duan, A. Liao, On the existence of Hermitian positive definite solutions of the matrix equation $X^s+A^*X^{-t}A$ = Q, Linear Algebra Appl. 429 (2008) 673-687. crossref(new window)

7.
C.-H. Guo, Convergence rate of an iterative method for nonlinear matrix equations, SIAM J. Control Optim. 31 (1993) 942-959. crossref(new window)

8.
C.-H. Guo, Newton's method for the discrete algebraic Riccati equations when the closed loop matrix has eigenvalues on the unit circle, SIAM J. Matrix Anal. Appl. 20 (1999) 279-294.

9.
C.-H. Guo, P. Lancaster, Iterative solution of two matrix equations, Math. Comp. 68 (1999) 1589-1603. crossref(new window)

10.
C.-H. Guo, N.J. Higham, Iterative solution of a nonsymmetric algebraic Riccati equation, SIAM J. Matrix Anal. Appl. 29 (2007) 396-412. crossref(new window)

11.
C.-H. Guo, A.J. Laub, On the iterative solution of a class of nonsymmetric algebraic Riccati equations, SIAM J. Matrix Anal. Appl. 67 (1998) 1089-1105.

12.
G.A. Hewer, An iterative technique for the computation of the steady-state gains for the discrete optimal regular, IEEE Trans. Autom. Control 16 (1971) 382-384. crossref(new window)

13.
N.J. Higham, H.-Y. Kim, Numercial analysis of a quadratic matrix equation, IAM J. Numer. Anal. 20 (4) (2000) 499-519. crossref(new window)

14.
N.J. Higham, H.-Y. Kim, Solving a quadratic matrix eqaution by Newton's method with exact line searches, SIAM J. Matrix Anal. Appl. 23 (2001) 303-416. crossref(new window)

15.
Z. Jia, M. Zhao, M. Wang, S. Ling, Solvability theory and iteration method for one self-adjoint polynomial matrix equation, J. Appl. Math. 2014, Art. ID 681605, 7 pp.

16.
Z. Jia, M. Wei, Solvability and sensitivity theory of polynomial matrix equation $X^s+A^TX^tA$ = Q, Appl. Math. Comput. 209 (2009) 230-237.

17.
C. Jung, H.-M. Kim, Y. Lim, On the solution of the nonlinear matrix equation $X^n$ = f(X), Linear Algebra Appl. 430 (2009) 2042-2052. crossref(new window)

18.
H.-M. Kim, Convergence of Newtion's method for solving a class of quadratic matrix equaitons, Honam Math. J. 30 (2) (2008) 399-409. crossref(new window)

19.
W. Kratz, E. Stickel, Numerical solution of matrix polynomial equations by Newton's method, IMA J. Numer. Anal. 7 (1987) 355-369. crossref(new window)

20.
G. Latouche, Newton's iteration for nonlinear equations in Markov chains, IMA J. Numer. Anal. 7 (1987) 355-369. crossref(new window)

21.
A.J. Lauh, Invariant Subspace Methods for the Numerical Solution of Riccati equations, Berlin: Springer-Verlag, 1991, 163-196.

22.
X. Liu, H. Gao, On the positive definite solutions of the matrix equations $X^s{\pm}A^TX^{-t}A=I_n$, Linear Algebra Appl. 368 (2003) 83-97. crossref(new window)

23.
J. Meng, H.-M. Kim, The positive definite solution to a nonlinear matrix equation, Linear and Multilinear Algebra, 2015. . crossref(new window)

24.
Z.-Y. Peng, S.M. EL-Sayed, X.-L. Zhang, Iterative mthods for the extremal positive definite solution of the matrix equation $X+A_*X^{-{\alpha}}A=Q$, J. Comput. Appl. Math. 200 (2007) 520-527. crossref(new window)

25.
G. Poole, T. Boullion, A survey on M-matrices, SIAM Rev. 16 (4) (1974) 419-427. crossref(new window)

26.
J.-H. Seo, H.-M. Kim, Convergence of pure and relaxed Newton methods for solving a matrix polynomial equation arising in stochastic models, Linear Algebra Appl. 440 (2014) 34-49. crossref(new window)

27.
X. Zhan, Computing the extremal positive definite solutions of a matrix equation, SIAM J. Sci, Comput. 17 (1996) 1167-1174. crossref(new window)