JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED NONLINEAR CONTRACTION WITH APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED NONLINEAR CONTRACTION WITH APPLICATIONS
Deshpande, Bhavana; Handa, Amrish; Thoker, Shamim Ahmad;
  PDF(new window)
 Abstract
We present coincidence point theorem for g-non-decreasing mappings satisfying generalized nonlinear contraction on partially ordered metric spaces. We show how multidimensional results can be seen as simple consequences of our unidimensional coincidence point theorem. We also obtain the coupled coincidence point theorem for generalized compatible pair of mappings by using obtained coincidence point results. Furthermore, an example and an application to integral equation are also given to show the usability of obtained results. Our results generalize, modify, improve and sharpen several well-known results.
 Keywords
Coincidence point;coupled coincidence point;generalized non-linear contraction;partially ordered metric space;O-compatible;generalized compatibility;g-non-decreasing mapping;mixed monotone mapping;commuting mapping;
 Language
English
 Cited by
 References
1.
R. P. Agarwal, R. K. Bisht and N. Shahzad, A comparison of various noncommuting conditions in metric fixed point theory and their applications, Fixed Point Theory Appl. 2014, Article ID 38. crossref(new window)

2.
T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393. crossref(new window)

3.
M. Berzig and B. Samet, An extension of coupled fixed point's concept in higher dimension and applications, Comput. Math. Appl. 63 (2012), no. 8, 1319-1334. crossref(new window)

4.
B. S. Choudhury and A. Kundu, A coupled coincidence point results in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010), 2524-2531. crossref(new window)

5.
B. Deshpande and A. Handa, Nonlinear mixed monotone-generalized contractions on partially ordered modified intuitionistic fuzzy metric spaces with application to integral equations, Afr. Mat. 26 (2015), no. 3-4, 317-343. crossref(new window)

6.
B. Deshpande and A. Handa, Application of coupled fixed point technique in solving integral equations on modified intuitionistic fuzzy metric spaces, Adv. Fuzzy Syst. Volume 2014, Article ID 348069, 11 pages.

7.
H. S. Ding, L. Li and S. Radenovic, Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces, Fixed Point Theory Appl. 2012, 96. crossref(new window)

8.
I. M. Erhan, E. Karapinar, A. Roldan and N. Shahzad, Remarks on coupled coincidence point results for a generalized compatible pair with applications, Fixed Point Theory Appl. 2014, 207. crossref(new window)

9.
K. Goebel, A coincidence theorem, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 16 (1968), 733-735.

10.
D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), no. 5, 623-632. crossref(new window)

11.
N. M. Hung, E. Karapinar and N. V. Luong, Coupled coincidence point theorem for O-compatible mappings via implicit relation, Abstr. Appl. Anal. 2012, Article ID 796964.

12.
N. Hussain, M. Abbas, A. Azam and J. Ahmad, Coupled coincidence point results for a generalized compatible pair with applications, Fixed Point Theory Appl. 2014, 62. crossref(new window)

13.
E. Karapinar and A. Roldan, A note on n-Tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces, J. Inequal. Appl. 2013, Article ID 567. crossref(new window)

14.
E. Karapinar, A. Roldan, C. Roldan and J. Martinez-Moreno, A note on N-Fixed point theorems for nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2013, Article ID 310. crossref(new window)

15.
E. Karapinar, A. Roldan, J. Martinez-Moreno and C. Roldan, Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces, Abstr. Appl. Anal. 2013, Article ID 406026.

16.
E. Karapinar, A. Roldan, C. Roldan and J. Martinez-Moreno, A note on N-Fixed point theorems for nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2013, Article ID 310. crossref(new window)

17.
E. Karapinar, A. Roldan, N. Shahzad and W. Sintunavarat, Discussion on coupled and tripled coincidence point theorems for $\phi$-contractive mappings without the mixed g-monotone property, Fixed Point Theory Appl. 2014, Article ID 92. crossref(new window)

18.
V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341-4349. crossref(new window)

19.
N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011), 983-992. crossref(new window)

20.
N. V. Luong and N. X. Thuan, Coupled points in ordered generalized metric spaces and application to integro-differential equations, Comput. Math. Appl. 62 (2011), no. 11, 4238-4248. crossref(new window)

21.
S. A. Al-Mezel, H. Alsulami, E. Karapinar and A. Roldan, Discussion on multidimensional coincidence points via recent publications, Abstr. Appl. Anal. Volume 2014, Article ID 287492, 13 pages.

22.
A. Roldan, J. Martinez-Moreno and C. Roldan, Multidimensional fixed point theorems in partially ordered metric spaces, J. Math. Anal. Appl. 396 (2012), 536-545. crossref(new window)

23.
A. Roldan, J. Martinez-Moreno, C. Roldan and E. Karapinar, Some remarks on multidimensional fixed point theorems, Fixed Point Theory 15 (2014), no. 2, 545-558.

24.
A. Roldan, J. Martinez-Moreno, C. Roldan and E. Karapinar, Some remarks on multidimensional fixed point theorems, Fixed Point Theory Appl. 2013, Article ID 158. crossref(new window)

25.
B. Samet, E. Karapinar, H. Aydi and V. C. Rajic, Discussion on some coupled fixed point theorems, Fixed Point Theory Appl. 2013, 50. crossref(new window)

26.
S. Wang, Coincidence point theorems for G-isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. (2013), 1687-1812-2013-96.

27.
S.Wang, Multidimensional fixed point theorems for isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2014, 137. crossref(new window)