JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ENERGY DECAY RATE FOR THE KELVIN-VOIGT TYPE WAVE EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING AND ACOUSTIC BOUNDARY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ENERGY DECAY RATE FOR THE KELVIN-VOIGT TYPE WAVE EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING AND ACOUSTIC BOUNDARY
Kang, Yong Han;
  PDF(new window)
 Abstract
In this paper, we study exponential stabilization of the vibrations of the Kelvin-Voigt type wave equation with Balakrishnan-Taylor damping and acoustic boundary in a bounded domain in . To stabilize the systems, we incorporate separately, the internal material damping in the model as like Kang [3]. Energy decay rate are obtained by the exponential stability of solutions by using multiplier technique.
 Keywords
Kelvin-Voigt type;Energy decay;Balakrishnan-Taylor damping;Acoustic boundary;Stabilization;Lyapunov functional;
 Language
English
 Cited by
 References
1.
A.T. Cousin, C.L. Frota and N.A. Larkin, On a system of Klein-Gordon type equations with acoustic boundary conditions, J. Math. Anal. Appl. 293 (2004), 293-309. crossref(new window)

2.
A.V. Balakishnan and L.W. Taylor, Distributed parameter nonlinear damping models for flight structures, Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.

3.
A. Vicente, Wave equations with acoustic/memory boundary conditions, Bol. Soc. Parana. Mat.27 (2009), no. 3, 29-39, Springer-Verlag, New York, 1972.

4.
A. Zarai and N.-E. Tatar, Global existence and polynominal decay for a problem Balakrishnan-Taylor damping, Archivum Mathematicum(BRNO) 46 (2010), 157-176.

5.
C.L. Frota and J.A. Goldstein, Some nonlinear wave equations with acoustic boundary conditions, J. Differ. Equ. 164 (2000), 92-109. crossref(new window)

6.
C.L. Frota and N.A. Larkin, Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains, Progr. Nonlinear Differential Equations Appl. 66 (2005), 297-312.

7.
G.C. Gorain, Exponential eneragy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation, Applied Mathematics and Computation 117 (2006), 235-242.

8.
G. Kirchhoff, Vorlesungen ubear Mathematische Physik, Mechanik(Teubner) 1977.

9.
H. Harrison, Plane and circular motion of a string, J. Acoust. Soc. Am.20 (1948), 874-875.

10.
J.Y. Park and J.A. Kim, Some nonlinear wave equations with nonlinear memory source term and acoustic boundary conditions, Numer. Funct. Anal. Optim. 27 (2006), 889-903. crossref(new window)

11.
J.Y. Park and S.H. Park, Decay rate estimates for wave equations of memory type with acoustic boundary conditions, Nonlinear Analysis : Theory, methods and Applications 74 (2011), no. 3, 993-998.

12.
J.Y. Park and T.G. Ha, Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions, J. Math. Phys. 50 (2009) Article No. 013506; doi:10.1063/1.3040185. crossref(new window)

13.
J.T. Beal and S.I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc. 80 (1974), 1276-1278. crossref(new window)

14.
M.A. Horn, Exact controllability and uniform stabilization of the Kirchhoff plate equation with boundary feedback acting via bending moments, J. Math. Anal. Appl. 167 (1992), 557-581. crossref(new window)

15.
R.W. Bass and D. Zes, Spillover, nonlinearity and exible structures, The Fourth NASA Workship on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 (L.W. Taylor, ed.), 1991, 1-14.

16.
Y.H. Kang, Energy decay rate for the Kirchhoff type wave equation with acoustic boundary condition, East Asian Mathematical Journal 28 (2012), no. 3, 339-345. crossref(new window)

17.
Y.H. Kang, Energy decay rates for the Kelvin-Voigt type wave equation with acoustic boundary condition, J. KSIAM. 16 (2012), no. 2, 85-91.