JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OPTIMAL CONTROL FOR SOME REACTION DIFFUSION MODEL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OPTIMAL CONTROL FOR SOME REACTION DIFFUSION MODEL
Ryu, Sang-Uk;
  PDF(new window)
 Abstract
This paper is concerned with the optimal control problem for some reaction diusion model. That is, we show the existence of the global weak solution for the Field-Noyes model. We also show the existence of the optimal control.
 Keywords
Optimal control;Field-Noyes model;
 Language
English
 Cited by
 References
1.
A. Azhand, J. F. Totz and H. Engel, Three-dimensional autonomous pacemaker in the photosensitive Belousov-Zhabotinsky medium, Europhysics Letters 108 (2014), no. 1, 10004. crossref(new window)

2.
E. Casas, L. A. Fernandez, and J. Yong, Optimal control of quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. 125 (1995), 545-565. crossref(new window)

3.
R, J, Field and R. M. Noyers, Oscillations in chemical systems V, Quantitative explanation of band migration in the Belousov-Zhabotinskii reaction, J. Am. Chem. Soc. 96 (1974), 2001-2006. crossref(new window)

4.
M. R. Garvie and C. Trenchea, Optimal control of a nutrient-phytoplankton-zooplankton-fish system, SIAM J. Control Optim. 46 (2007), no. 3, 775-791. crossref(new window)

5.
K. H. Hoffman and L. Jiang, Optimal control of a phase field model for solidification, Numer. Funct. Anal. and Optimiz. 13 (1992), no. 1&2, 11-27. crossref(new window)

6.
S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl. 256 (2001), 45-66. crossref(new window)

7.
S.-U. Ryu, Optimal control for Belousov-Zhabotinskii reaction model. East Asian Math. J. 31 (2015), no. 1, 109-117. crossref(new window)

8.
S.-U. Ryu, Optimality conditions for optimal control governed by Belousov-Zhabotinskii reaction model, Commun. Korean Math. Soc. 30(2015), no. 3, 327-337. crossref(new window)

9.
A. Yagi, Abstract parabolic evolution equations and their applications, Springer-Verlag, Berlin 2010.

10.
Y. You, Global Dynamics of the Oregonator System, Math. Methods Appl. Sci., 35 (2012), no. 4, 398-416. crossref(new window)

11.
V. S. Zykov, G. Bordiougov, H. Brandtstadter, I. Gerdes and H. Engel, Global dontrol of spiral wave dynamics in an excitable domain of circular and elliptical shape, Phys. Rev. Lett. 92 (2004), 018304. crossref(new window)