JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FUZZY STABILITY OF QUADRATIC-CUBIC FUNCTIONAL EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FUZZY STABILITY OF QUADRATIC-CUBIC FUNCTIONAL EQUATIONS
Kim, Chang Il; Yun, Yong Sik;
  PDF(new window)
 Abstract
In this paper, we consider the functional equation f(x + 2y) - 3f(x + y) + 3f(x) - f(x - y) - 3f(y) + 3f(-y)
 Keywords
fuzzy Banach space;fixed point;generalized Hyers-Ulam stability;quadratic mapping;cubic mapping;
 Language
English
 Cited by
 References
1.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2(1950), 64-66. crossref(new window)

2.
T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 3(2003), 687-705.

3.
S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86(1994), 429-436.

4.
P.W.Cholewa, Remarkes on the stability of functional equations, Aequationes Math., 27(1984), 76-86. crossref(new window)

5.
K Cieplinski, Applications of fixed point theorems to the hyers-ulam stability of functional equation-A survey, Ann. Funct. Anal. 3 (2012), no. 1, 151-164. crossref(new window)

6.
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62(1992), 59-64. crossref(new window)

7.
J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. crossref(new window)

8.
P. Gavruta, A generalization of the Hyer-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436. crossref(new window)

9.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27(1941), 222-224. crossref(new window)

10.
G. Isac and Th. M. Rassias, Stability of $\psi$-additive mappings, Appications to nonlinear analysis, Internat. J. Math. Math. Sci. 19(1996), 219-228. crossref(new window)

11.
I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11(1975), 326-334.

12.
A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst, 12(1984), 143-154. crossref(new window)

13.
D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008) 567-572. crossref(new window)

14.
A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst. 159(2008), 730-738. crossref(new window)

15.
A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Results Math. 52(2008), 161-177. crossref(new window)

16.
A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst. 159(2008), 720-729. crossref(new window)

17.
M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bulletin of the Brazilian Mathematical Society,37(2006), no. 3, 361-376. crossref(new window)

18.
S. A. Mohiuddine and A. Alotaibi, Fuzzy stability of a cubic functional equation via fixed point technique, Advances in Difference Equations, 48(2012).

19.
C. Park, S. H. Lee and S. H. Lee, Fuzzy stability of a cubic-cubic functional equation: A fixed point approach, Korean J. Math. 17(2009), no.3, 315-330.

20.
J. M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Matematicki, 36(2001), 63-72.

21.
Th. M. Rassias, On the stability of the linear mapping in Banach sapces, Proc. Amer. Math. Sco. 72(1978), 297-300. crossref(new window)

22.
F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129. crossref(new window)

23.
S. M. Ulam, A collection of mathematical problems, Interscience Publisher, New York, 1964.