Advanced SearchSearch Tips
Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 38, Issue 12,  2015, pp.1054-1063
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2015.0153
 Title & Authors
Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions
Kwon, Young-Yon; Choi, Kyung-Mi; Cho, ChangYeon; Lee, Cheol-Koo;
  PDF(new window)
Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 (, , , , , , , , , , , , , and ) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane--ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.
cellular ATP;electron transport chain;ETC-component single gene deletion;mitochondria;mitochondrial ROS;
 Cited by
Caloric Restriction and Rapamycin Differentially Alter Energy Metabolism in Yeast, The Journals of Gerontology: Series A, 2017  crossref(new windwow)
Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast, Molecules and Cells, 2017, 40, 4, 307  crossref(new windwow)
The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heat-shock conditions, Scientific Reports, 2017, 7, 1  crossref(new windwow)
Aggeler, R., and Capaldi, R.A. (1990). Yeast cytochrome c oxidase subunit VII is essential for assembly of an active enzyme. Cloning, sequencing, and characterization of the nuclearencoded gene. J. Biol. Chem. 265, 16389-16393.

Bratic, A., and Larsson, N.G. (2013). The role of mitochondria in aging. J. Clin. Invest. 123, 951-957. crossref(new window)

Breitenbach, M., Laun, P., Dickinson, J.R., Klocker, A., Rinnerthaler, M., Dawes, I.W., Aung-Htut, M.T., Breitenbach-Koller, L., Caballero, A., Nystrom, T., et al. (2012). The role of mitochondria in the aging processes of yeast. Subcell. Biochem. 57, 55-78.

Choi, J.S., and Lee, C.K. (2013). Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast. Biochem. Biophys. Res. Commun. 439, 126-131. crossref(new window)

Choi, J.S., Choi, K.M., and Lee, C.K. (2011). Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 409, 308-314. crossref(new window)

Choi, K.M., Kwon, Y.Y., and Lee, C.K. (2013a). Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp. Gerontol. 48, 1455-1468. crossref(new window)

Choi, K.M., Lee, H.L., Kwon, Y.Y., Kang, M.S., Lee, S.K., and Lee, C.K. (2013b). Enhancement of mitochondrial function correlates with the extension of lifespan by caloric restriction and caloric restriction mimetics in yeast. Biochem. Biophys. Res. Commun. 441, 236-242. crossref(new window)

Choi, K.M., Kwon, Y.Y., and Lee, C.K. (2015). Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast. FEBS Lett. 589, 349-357. crossref(new window)

de Grey, A.D. (2005). Reactive oxygen species production in the mitochondrial matrix: implications for the mechanism of mitochondrial mutation accumulation. Rejuvenation Res. 8, 13-17. crossref(new window)

Demir, A.B., and Koc, A. (2010). Assessment of chronological lifespan dependent molecular damages in yeast lacking mitochondrial antioxidant genes. Biochem. Biophys. Res. Commun. 400, 106-110. crossref(new window)

Duttaroy, A., Paul, A., Kundu, M., and Belton, A. (2003). A Sod2 null mutation confers severely reduced adult life span in Drosophila. Genetics 165, 2295-2299.

Gerschman, R., Gilbert, D.L., Nye, S.W., Dwyer, P., and Fenn, W.O. (1954). Oxygen poisoning and x-irradiation: a mechanism in common. Science 119, 623-626. crossref(new window)

Gomes, F., Tahara, E.B., Busso, C., Kowaltowski, A.J., and Barros, M.H. (2013). nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants. Biochem. J. 449, 595-603. crossref(new window)

Gralla, E.B., and Kosman, D.J. (1992). Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv. Genet. 30, 251-319. crossref(new window)

Guelin, E., Chevallier, J., Rigoulet, M., Guerin, B., and Velours, J. (1993). ATP synthase of yeast mitochondria. Isolation and disruption of the ATP epsilon gene. J. Biol. Chem. 268, 161-167.

Hacioglu, E., Demir, A.B., and Koc, A. (2012). Identification of respiratory chain gene mutations that shorten replicative life span in yeast. Exp. Gerontol. 47, 149-153. crossref(new window)

Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300. crossref(new window)

Harman, D. (1972). The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 145-147. crossref(new window)

Joseph-Horne, T., Hollomon, D.W., and Wood, P.M. (2001). Fungal respiration: a fusion of standard and alternative components. Biochim. Biophys. Acta 1504, 179-195. crossref(new window)

Kaeberlein, M., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005). Genes determining yeast replicative life span in a long-lived genetic background. Mech. Ageing Dev. 126, 491-504. crossref(new window)

Lee, Y.L., and Lee, C.K. (2008). Transcriptional response according to strength of calorie restriction in Saccharomyces cerevisiae. Mol. Cells 26, 299-307.

Li, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H., et al. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11, 376-381. crossref(new window)

McCord, J.M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049-6055.

Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144-148. crossref(new window)

Muller, F.L., Liu, Y., and Van Remmen, H. (2004). Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279, 49064-49073. crossref(new window)

Norais, N., Prome, D., and Velours, J. (1991). ATP synthase of yeast mitochondria. Characterization of subunit d and sequence analysis of the structural gene ATP7. J. Biol. Chem. 266, 16541-16549.

Passos, J.F., von Zglinicki, T., and Saretzki, G. (2006). Mitochondrial dysfunction and cell senescence: cause or consequence? Rejuvenation Res. 9, 64-68. crossref(new window)

Scialo, F., Mallikarjun, V., Stefanatos, R., and Sanz, A. (2013). Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid. Redox Signal. 19, 1953-1969. crossref(new window)

Stehr-Green, P.A., Cochi, S.L., Preblud, S.R., and Orenstein, W.A. (1990). Evidence against increasing rubella seronegativity among adolescent girls. Am. J. Public Health 80, 88. crossref(new window)

Trueblood, C.E., and Poyton, R.O. (1987). Differential effectiveness of yeast cytochrome c oxidase subunit genes results from differences in expression not function. Mol. Cell. Biol. 7, 3520-3526. crossref(new window)

Uh, M., Jones, D., and Mueller, D.M. (1990). The gene coding for the yeast oligomycin sensitivity-conferring protein. J. Biol. Chem. 265, 19047-19052.

Van Raamsdonk, J.M., and Hekimi, S. (2009). Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet. 5, e1000361. crossref(new window)

Veatch, J.R., McMurray, M.A., Nelson, Z.W., and Gottschling, D.E. (2009). Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137, 1247-1258. crossref(new window)

Velours, J., Arselin, G., Paul, M.F., Galante, M., Durrens, P., Aigle, M., and Guerin, B. (1989). The yeast ATP synthase subunit 4: structure and function. Biochimie 71, 903-915. crossref(new window)