Advanced SearchSearch Tips
The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 38, Issue 12,  2015, pp.1064-1070
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2015.0165
 Title & Authors
The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species
Joo, Hee Kyoung; Lee, Yu Ran; Kang, Gun; Choi, Sunga; Kim, Cuk-Seong; Ryoo, Sungwoo; Park, Jin Bong; Jeon, Byeong Hwa;
  PDF(new window)
Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10-100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO (), a specific mitochondrial antioxidants, and cyclosporin A (), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam (), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells.
endothelial cells;PKC;ROS;TSPO;VCAM-1;
 Cited by
Anholt, R.R., Pedersen, P.L., De Souza, E.B., and Snyder, S.H. (1986). The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J. Biol. Chem. 261, 576-583.

Bae, Y.S., Oh, H., Rhee, S.G., and Yoo, Y.D. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509. crossref(new window)

Basso, E., Fante, L., Fowlkes, J., Petronilli, V., Forte, M.A., and Bernardi, P. (2005). Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J. Biol. Chem. 280, 18558-18561. crossref(new window)

Bono, F., Lamarche, I., Prabonnaud, V., Le Fur, G., and Herbert, J.M. (1999). Peripheral benzodiazepine receptor agonists exhibit potent antiapoptotic activities. Biochem. Biophys. Res. Commun. 265, 457-461. crossref(new window)

Chen, K.H., Reece, L.M., and Leary, J.F. (1999). Mitochondrial glutathione modulates TNF-alpha-induced endothelial cell dysfunction. Free Radic. Biol. Med. 27, 100-109. crossref(new window)

Davidson, S.M., and Duchen, M.R. (2007). Endothelial mitochondria: contributing to vascular function and disease. Circ. Res. 100, 1128-1141. crossref(new window)

Dikalova, A.E., Bikineyeva, A.T., Budzyn, K., Nazarewicz, R.R., McCann, L., Lewis, W., Harrison, D.G., and Dikalov, S.I. (2010). Therapeutic targeting of mitochondrial superoxide in hypertension. Circ. Res. 107, 106-116. crossref(new window)

Fujimura, Y., Hwang, P.M., Trout Iii, H., Kozloff, L., Imaizumi, M., Innis, R.B., and Fujita, M. (2008). Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [(3)H]PK 11195. Atherosclerosis 201, 108-111. crossref(new window)

Galiegue, S., Tinel, N., and Casellas, P. (2003). The peripheral benzodiazepine receptor: a promising therapeutic drug target. Curr. Med. Chem. 10, 1563-1572. crossref(new window)

Hardwick, M.J., Chen, M.K., Baidoo, K., Pomper, M.G., and Guilarte, T.R. (2005). In vivo imaging of peripheral benzodiazepine receptors in mouse lungs: a biomarker of inflammation. Mol. Imaging 4, 432-438.

Jeon, B.H., Gupta, G., Park, Y.C., Qi, B., Haile, A., Khanday, F.A., Liu, Y.X., Kim, J.M., Ozaki, M., White, A.R., et al. (2004). Apurinic/apyrimidinic endonuclease 1 regulates endothelial NO production and vascular tone. Circ. Res. 95, 902-910. crossref(new window)

Joo, H.K., Oh, S.C., Cho, E.J., Park, K.S., Lee, J.Y., Lee, E.J., Lee, S.K., Kim, H.S., Park, J.B., and Jeon, B.H. (2009). Midazolam inhibits tumor necrosis factor-alpha-induced endothelial activation: involvement of the peripheral benzodiazepine receptor. Anesthesiology 110, 106-112. crossref(new window)

Joo, H.K., Lee, Y.R., Lim, S.Y., Lee, E.J., Choi, S., Cho, E.J., Park, M.S., Ryoo, S., Park, J.B., and Jeon, B.H. (2012). Peripheral benzodiazepine receptor regulates vascular endothelial activations via suppression of the voltage-dependent anion channel-1. FEBS Lett. 586, 1349-1355. crossref(new window)

Joo, H.K., Lee, Y.R., Park, M.S., Choi, S., Park, K., Lee, S.K., Kim, C.S., Park, J.B., and Jeon, B.H. (2014). Mitochondrial APE1/Ref-1 suppressed protein kinase C-induced mitochondrial dysfunction in mouse endothelial cells. Mitochondrion 17, 42-49. crossref(new window)

Kanto, J.H. (1985). Midazolam: the first water-soluble benzodiazepine. Pharmacology, pharmacokinetics and efficacy in insomnia and anesthesia. Pharmacotherapy 5, 138-155. crossref(new window)

Kim, S.N., Son, S.C., Lee, S.M., Kim, C.S., Yoo, D.G., Lee, S.K., Hur, G.M., Park, J.B., and Jeon, B.H. (2006). Midazolam inhibits proinflammatory mediators in the lipopolysaccharide-activated macrophage. Anesthesiology 105, 105-110. crossref(new window)

Kim, H.J., Park, K.G., Yoo, E.K., Kim, Y.H., Kim, Y.N., Kim, H.S., Kim, H.T., Park, J.Y., Lee, K.U., Jang, W.G., et al. (2007). Effects of PGC-1alpha on TNF-alpha-induced MCP-1 and VCAM-1 expression and NF-kappaB activation in human aortic smooth muscle and endothelial cells. Antioxid Redox Signal. 9, 301-307. crossref(new window)

Kluge, M.A., Fetterman, J.L., and Vita, J.A. (2013). Mitochondria and endothelial function. Circ. Res. 112, 1171-1188. crossref(new window)

Leducq, N., Bono, F., Sulpice, T., Vin, V., Janiak, P., Fur, G.L., O'Connor, S.E., and Herbert, J.M. (2003). Role of peripheral benzodiazepine receptors in mitochondrial, cellular, and cardiac damage induced by oxidative stress and ischemia-reperfusion. J. Pharmacol. Exp. Ther. 306, 828-837. crossref(new window)

Levin, E., Premkumar, A., Veenman, L., Kugler, W., Leschiner, S., Spanier, I., Weisinger, G., Lakomek, M., Weizman, A., Snyder, S.H., et al. (2005). The peripheral-type benzodiazepine receptor and tumorigenicity: isoquinoline binding protein (IBP) antisense knockdown in the C6 glioma cell line. Biochemistry 44, 9924-9935. crossref(new window)

Liao, J.K. (2013). Linking endothelial dysfunction with endothelial cell activation. J. Clin. Invest. 123, 540-541. crossref(new window)

Madamanchi, N.R., and Runge, M.S. (2007). Mitochondrial dysfunction in atherosclerosis. Circ. Res. 100, 460-473. crossref(new window)

McEnery, M.W., Snowman, A.M., Trifiletti, R.R., and Snyder, S.H. (1992). Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc. Natl. Acad. Sci. USA 89, 3170-3174. crossref(new window)

Park, M.S., Kim, C.S., Joo, H.K., Lee, Y.R., Kang, G., Kim, S.J., Choi, S., Lee, S.D., Park, J.B., and Jeon, B.H. (2013). Cytoplasmic localization and redox cysteine residue of APE1/Ref-1 are associated with its anti-inflammatory activity in cultured endothelial cells. Mol. Cells 36, 439-445. crossref(new window)

Qi, X., Xu, J., Wang, F., and Xiao, J. (2012). Translocator protein (18 kDa): a promising therapeutic target and diagnostic tool for cardiovascular diseases. Oxid. Med. Cell. Longev. 2012, 162934.

Rogers, R.J., Monnier, J.M., and Nick, H.S. (2001). Tumor necrosis factor-alpha selectively induces MnSOD expression via mitochondria-to-nucleus signaling, whereas interleukin-1beta utilizes an alternative pathway. J. Biol. Chem. 276, 20419-20427. crossref(new window)

Ross, R. (1995). Cell biology of atherosclerosis. Annu. Rev. Physiol. 57, 791-804. crossref(new window)

Tomasello, F., Messina, A., Lartigue, L., Schembri, L., Medina, C., Reina, S., Thoraval, D., Crouzet, M., Ichas, F., De Pinto, V., et al. (2009). Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stressinduced apoptosis. Cell Res. 19, 1363-1376. crossref(new window)

Veenman, L., Levin, E., Weisinger, G., Leschiner, S., Spanier, I., Snyder, S.H., Weizman, A., and Gavish, M. (2004). Peripheraltype benzodiazepine receptor density and in vitro tumorigenicity of glioma cell lines. Biochem. Pharmacol. 68, 689-698. crossref(new window)

Zinovkin, R.A., Romaschenko, V.P., Galkin, II, Zakharova, V.V., Pletjushkina, O.Y., Chernyak, B.V., and Popova, E.N. (2014). Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium. Aging 6, 661-674. crossref(new window)

Zisterer, D.M., Gorman, A.M., Williams, D.C., and Murphy, M.P. (1992). The effects of the peripheral-type benzodiazepine acceptor ligands, Ro 5-4864 and PK 11195, on mitochondrial respiration. Methods Find. Exp. Clin. Pharmacol. 14, 85-90.