JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Crystal Structure and Comparative Sequence Analysis of GmhA from Colwellia psychrerythraea Strain 34H Provides Insight into Functional Similarity with DiaA
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 38, Issue 12,  2015, pp.1086-1095
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2015.0191
 Title & Authors
Crystal Structure and Comparative Sequence Analysis of GmhA from Colwellia psychrerythraea Strain 34H Provides Insight into Functional Similarity with DiaA
Do, Hackwon; Yun, Ji-Sook; Lee, Chang Woo; Choi, Young Jun; Kim, Hye-Yeon; Kim, Youn-Jung; Park, Hyun; Chang, Jeong Ho; Lee, Jun Hyuck;
  PDF(new window)
 Abstract
The psychrophilic organism Colwellia psychrerythraea strain 34H produces extracellular polysaccharide substances to tolerate cold environments. Sedoheptulose 7-phosphate isomerase (GmhA) is essential for producing -glycero--mannoheptose 7-phosphate, a key mediator in the lipopolysaccharide biosynthetic pathway. We determined the crystal structure of GmhA from C. psychrerythraea strain 34H (CpsGmhA, UniProtKB code: Q47VU0) at a resolution of . The tetrameric structure is similar to that of homologous GmhA structures. Interestingly, one of the catalytic residues, glutamate, which has been reported to be critical for the activity of other homologous GmhA enzymes, is replaced by a glutamine residue in the CpsGmhA protein. We also found differences in the conformations of several other catalytic residues. Extensive structural and sequence analyses reveal that CpsGmhA shows high similarity to Escherichia coli DnaA initiatorassociating protein A (DiaA). Therefore, the CpsGmhA structure reported here may provide insight into the structural and functional correlations between GmhA and DiaA among specific microorganisms.
 Keywords
Colwellia psychrerythraea strain 34H;CpsGmhA;DiaA;psychrophile;sedoheptulose 7-phosphate isomerase;
 Language
English
 Cited by
1.
Functional and structural studies on theNeisseria gonorrhoeaeGmhA, the first enzyme in theglycero-manno-heptose biosynthesis pathways, demonstrate a critical role in lipooligosaccharide synthesis and gonococcal viability, MicrobiologyOpen, 2017, 6, 2, e00432  crossref(new windwow)
2.
Functional characterization of Helicobacter pylori 26695 sedoheptulose 7-phosphate isomerase encoded by hp0857 and its association with lipopolysaccharide biosynthesis and adhesion, Biochemical and Biophysical Research Communications, 2016, 477, 4, 794  crossref(new windwow)
3.
Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes, Frontiers in Microbiology, 2016, 7  crossref(new windwow)
 References
1.
Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R., and Leslie, A.G. (2011). iMOSFLM: a new graphical interface for diffractionimage processing with MOSFLM. Acta Crystallogr. Sect D: Biol. Crystallogr. 67, 271-281.

2.
Bazaka, K., Crawford, R.J., Nazarenko, E.L., and Ivanova, E.P. (2011). Bacterial extracellular polysaccharides. In Bacterial adhesion (Springer), pp. 213-226.

3.
Brooke, J.S., and Valvano, M.A. (1996). Biosynthesis of inner core lipopolysaccharide in enteric bacteria identification and characterization of a conserved phosphoheptose isomerase. J. Biol. Chem. 271, 3608-3614. crossref(new window)

4.
Carillo, S., Casillo, A., Pieretti, G., Parrilli, E., Sannino, F., Bayer-Giraldi, M., Cosconati, S., Novellino, E., Ewert, M., Deming, J.W., et al. (2015). A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco)proteins. J. Am. Chem. Soc. 137, 179-189. crossref(new window)

5.
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552. crossref(new window)

6.
Chattopadhyay, M. (2006). Mechanism of bacterial adaptation to low temperature. J. Biosci. 31, 157-165. crossref(new window)

7.
Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2009). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect D: Biol. Crystallogr. 66, 12-21.

8.
Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., and Thompson, J.D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497-3500. crossref(new window)

9.
DeLano, W.L. (2002). The PyMOL molecular graphics system.

10.
Feller, G. (2013). Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo) 2013, 512840.

11.
Feller, G., and Gerday, C. (2003). Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1, 200-208. crossref(new window)

12.
Gouet, P., Courcelle, E., and Stuart, D.I. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308. crossref(new window)

13.
Harmer, N.J. (2010). The structure of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei reveals a zinc binding site at the heart of the active site. J. Mol. Biol. 400, 379-392. crossref(new window)

14.
Holm, L., and Rosenstrom, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545-549. crossref(new window)

15.
Huston, A.L., Krieger-Brockett, B.B., and Deming, J.W. (2000). Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ. Microbiol. 2, 383-388. crossref(new window)

16.
Huston, A.L., Methe, B., and Deming, J.W. (2004). Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70, 3321-3328. crossref(new window)

17.
Ishida, T., Akimitsu, N., Kashioka, T., Hatano, M., Kubota, T., Ogata, Y., Sekimizu, K., and Katayama, T. (2004). DiaA, a novel DnaAbinding protein, ensures the timely initiation of Escherichia coli chromosome replication. J. Biol. Chem. 279, 45546-45555. crossref(new window)

18.
Junge, K., Eicken, H., Swanson, B.D., and Deming, J.W. (2006). Bacterial incorporation of leucine into protein down to-20 degrees C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52, 417-429. crossref(new window)

19.
Keyamura, K., Fujikawa, N., Ishida, T., Ozaki, S., Su'etsugu, M., Fujimitsu, K., Kagawa, W., Yokoyama, S., Kurumizaka, H., and Katayama, T. (2007). The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP-DnaAspecific initiation complexes. Genes Dev. 21, 2083-2099. crossref(new window)

20.
Kim, M.S., and Shin, D.H. (2009). A preliminary X-ray study of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65, 1110-1112. crossref(new window)

21.
Kneidinger, B., Graninger, M., Puchberger, M., Kosma, P., and Messner, P. (2001). Biosynthesis of nucleotide-activated Dglycero-D-manno-heptose. J. Biol. Chem. 276, 20935-20944. crossref(new window)

22.
Krembs, C.e., Eicken, H., Junge, K., and Deming, J. (2002). High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res. Part I 49, 2163-2181.

23.
Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774-797. crossref(new window)

24.
Marx, J.G., Carpenter, S.D., and Deming, J.W. (2009). Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J. Microbiol. 55, 63-72. crossref(new window)

25.
Methe, B.A., Nelson, K.E., Deming, J.W., Momen, B., Melamud, E., Zhang, X.J., Moult, J., Madupu, R., Nelson, W.C., Dodson, R.J., et al. (2005). The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA 102, 10913-10918. crossref(new window)

26.
Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., and Vagin, A.A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect D Biol. Crystallogr. 67, 355-367. crossref(new window)

27.
Natrajan, G., Hall, D.R., Thompson, A.C., Gutsche, I., and Terradot, L. (2007). Structural similarity between the DnaA-binding proteins HobA (HP1230) from Helicobacter pylori and DiaA from Escherichia coli. Mol. Microbiol. 65, 995-1005. crossref(new window)

28.
Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593-656. crossref(new window)

29.
Pattengale, N.D., Alipour, M., Bininda-Emonds, O.R., Moret, B.M., and Stamatakis, A. (2010). How many bootstrap replicates are necessary? J. Comput. Biol. 17, 337-354. crossref(new window)

30.
Pikuta, E.V., Hoover, R.B., and Tang, J. (2007). Microbial extremophiles at the limits of life. Crit. Rev. Microbiol. 33, 183-209. crossref(new window)

31.
Raetz, C.R., and Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635-700. crossref(new window)

32.
Russell, N.J. (1990). Cold adaptation of microorganisms. Philos. Trans. R Soc. Lond. B. Biol. Sci. 326, 595-608, discussion 608-511. crossref(new window)

33.
Russell, N.J. (1998). Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv. Biochem. Eng. Biotechnol. 61, 1-21.

34.
Seetharaman, J., Rajashankar, K.R., Solorzano, V., Kniewel, R., Lima, C.D., Bonanno, J.B., Burley, S.K., and Swaminathan, S. (2006). Crystal structures of two putative phosphoheptose isomerases. Proteins 63, 1092-1096. crossref(new window)

35.
Shen, B., Hohmann, S., Jensen, R.G., and Bohnert, H.J. (1999). Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol. 121, 45-52. crossref(new window)

36.
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. crossref(new window)

37.
Taylor, P.L., Blakely, K.M., de Leon, G.P., Walker, J.R., McArthur, F., Evdokimova, E., Zhang, K., Valvano, M.A., Wright, G.D., and Junop, M.S. (2008). Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants. J. Biol. Chem. 283, 2835-2845. crossref(new window)

38.
Vagin, A., and Teplyakov, A. (2009). Molecular replacement with MOLREP. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 22-25.

39.
Vaguine, A.A., Richelle, J., and Wodak, S. (1999). SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. Sect D. Biol. Crystallogr. 55, 191-205. crossref(new window)

40.
Wells, L.E., and Deming, J.W. (2006). Characterization of a coldactive bacteriophage on two psychrophilic marine hosts. Aquat. Microb. Ecol. 45, 15-29. crossref(new window)