JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Overview on Peroxiredoxin
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 1,  2016, pp.1-5
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2368
 Title & Authors
Overview on Peroxiredoxin
Rhee, Sue Goo;
  PDF(new window)
 Abstract
Peroxiredoxins (Prxs) are a very large and highly conserved family of peroxidases that reduce peroxides, with a conserved cysteine residue, designated the "peroxidatic" Cys () serving as the site of oxidation by peroxides (Hall et al., 2011; Rhee et al., 2012). Peroxides oxidize the -SH to cysteine sulfenic acid (-SOH), which then reacts with another cysteine residue, named the "resolving" Cys () to form a disulfide that is subsequently reduced by an appropriate electron donor to complete a catalytic cycle. This overview summarizes the status of studies on Prxs and relates the following 10 minireviews.
 Keywords
circadian rhythm;hydrogen peroxide;peroxiredoxin;redox regulation;thiol-specific peroxidasee;
 Language
English
 Cited by
1.
Discovering Antioxidant Molecules in the Archaea Domain: Peroxiredoxin Bcp1 fromSulfolobus solfataricusProtects H9c2 Cardiomyoblasts from Oxidative Stress, Archaea, 2016, 2016, 1  crossref(new windwow)
2.
The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals, Free Radical Research, 2017, 51, 2, 148  crossref(new windwow)
3.
Mitochondrial peroxiredoxins are essential in regulating the relationship between Drosophila immunity and aging, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2017, 1863, 1, 68  crossref(new windwow)
4.
Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane, Free Radical Research, 2016, 50, 12, 1329  crossref(new windwow)
5.
NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans, Frontiers in Microbiology, 2017, 8  crossref(new windwow)
6.
The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response, The Plant Journal, 2017, 91, 6, 995  crossref(new windwow)
7.
Glutathione, Glutaredoxins, and Iron, Antioxidants & Redox Signaling, 2017  crossref(new windwow)
8.
Peroxiredoxins and Redox Signaling in Plants, Antioxidants & Redox Signaling, 2017  crossref(new windwow)
9.
Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line, Scientific Reports, 2016, 6, 1  crossref(new windwow)
10.
Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2, Journal of Biological Chemistry, 2017, 292, 21, 8705  crossref(new windwow)
11.
Nrf2-peroxiredoxin I axis in polymorphous adenocarcinoma is associated with low matrix metalloproteinase 2 level, Virchows Archiv, 2017  crossref(new windwow)
12.
Overexpression of AhpC enhances stress tolerance and N 2 –fixation in Anabaena by upregulating stress responsive genes, Biochimica et Biophysica Acta (BBA) - General Subjects, 2016, 1860, 11, 2576  crossref(new windwow)
13.
Analysis of protein profiling studies of β-thalassemia/Hb E disease, PROTEOMICS - Clinical Applications, 2016, 10, 11, 1093  crossref(new windwow)
14.
Evening and morning peroxiredoxin-2 redox/oligomeric state changes in obstructive sleep apnea red blood cells: Correlation with polysomnographic and metabolic parameters, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2017, 1863, 2, 621  crossref(new windwow)
15.
Multiple Functions and Regulation of Mammalian Peroxiredoxins, Annual Review of Biochemistry, 2017, 86, 1, 749  crossref(new windwow)
16.
Enhanced fermentative performance under stresses of multiple lignocellulose-derived inhibitors by overexpression of a typical 2-Cys peroxiredoxin from Kluyveromyces marxianus, Biotechnology for Biofuels, 2017, 10, 1  crossref(new windwow)
17.
Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm, Free Radical Biology and Medicine, 2016, 100, 73  crossref(new windwow)
18.
Mitochondrial H 2 O 2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm, Free Radical Biology and Medicine, 2016, 99, 120  crossref(new windwow)
19.
Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysate, Food Chemistry, 2017, 234, 230  crossref(new windwow)
20.
Biodegradation of alkaline lignin by Bacillus ligniniphilus L1, Biotechnology for Biofuels, 2017, 10, 1  crossref(new windwow)
21.
Experimentally Dissecting the Origins of Peroxiredoxin Catalysis, Antioxidants & Redox Signaling, 2017  crossref(new windwow)
22.
The Role of Peroxiredoxins in the Transduction of H2O2 Signals, Antioxidants & Redox Signaling, 2017  crossref(new windwow)
 References
1.
Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980-984. crossref(new window)

2.
Causton, H.C., Feeney, K.A., Ziegler, C.A., and O'Neill, J.S. (2015). Metabolic cycles in yeast share features conserved among circadian rhythms. Curr. Biol. 25, 1056-1062. crossref(new window)

3.
Chae, H.Z., Chung, S.J., and Rhee, S.G. (1994a). Thioredoxindependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670-27678.

4.
Chae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G., and Rhee, S.G. (1994b). Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91, 7017-7021. crossref(new window)

5.
Cox, A.G., Pullar, J.M., Hughes, G., Ledgerwood, E.C., and Hampton, M.B. (2008). Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis. Free Rad. Biol. Med. 44, 1001-1009. crossref(new window)

6.
Diet, A., Abbas, K., Bouton, C., Guillon, B., Tomasello, F., Fourquet, S., Toledano, M.B., and Drapier, J.C. (2007). Regulation of peroxiredoxins by nitric oxide in immunostimulated macrophages. J. Biol. Chem. 282, 36199-36205. crossref(new window)

7.
Dietz, K.J. (2016). Thiol-based peroxidases and ascorbate peroxidases:why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol. Cells 39, 20-25. crossref(new window)

8.
Edgar, R.S., Green, E.W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., Xu, Y., Pan, M., Valekunja, U.K., Feeney, K.A., et al. (2012). Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459-464.

9.
Fisher, A.B. (2011). Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A(2) activities. Antioxid. Redox Signal. 15, 831-844. crossref(new window)

10.
Furuta, T., Imajo-Ohmi, S., Fukuda, H., Kano, S., Miyake, K., and Watanabe, N. (2008). Mast cell-mediated immune responses through IgE antibody and Toll-like receptor 4 by malarial peroxiredoxin. Eur. J. Immunol. 38, 1341-1350. crossref(new window)

11.
Gretes, M.C., Poole, L.B., and Karplus, P.A. (2012). Peroxiredoxins in parasites. Antioxid. Redox Signal. 17, 608-633. crossref(new window)

12.
Hall, A., Nelson, K., Poole, L.B., and Karplus, P.A. (2011). Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795-815. crossref(new window)

13.
Hampton, M.B., and O'Connor, K.M. (2016). Peroxiredoxins and the regulation of cell death. Mol. Cells 39, 72-76. crossref(new window)

14.
Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635. crossref(new window)

15.
Kil, I.S., Lee, S.K., Ryu, K.W., Woo, H.A., Hu, M.C., Bae, S.H., and Rhee, S.G. (2012). Feedback control of adrenal steroidogenesis via $H_2O_2$-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46, 584-594. crossref(new window)

16.
Kil, I.S., Ryu, K. W., Lee, S.Y., Kim, Y. Y., Chu, S. Y., Kim, J. H., Park, S., Rhee, S. G. (2015). Circadian Oscillation of Sulfiredoxin in the Mitochondria. Mol. Cell 59, 1-13. crossref(new window)

17.
Kim, K., Kim, I.H., Lee, K.Y., Rhee, S.G., and Stadtman, E.R. (1988). The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixedfunction oxidation system. J. Biol. Chem. 263, 4704-4711.

18.
Kim, I.H., Kim, K., and Rhee, S.G. (1989). Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc. Natl. Acad. Sci. USA 86, 6018-6022. crossref(new window)

19.
Knoops, B., Goemaere, J., Van der Eecken, V., and Declercq, J.P. (2011). Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid. Redox Signal. 15, 817-829. crossref(new window)

20.
Knoops, B., Argyropoulou, V., Becker, S., and Ferte, L., Kuznetsova, O. (2016). Multiple roles of peroxiredoxins in inflammation. Mol. Cells 39, 60-64 crossref(new window)

21.
Kwon, J., Lee, S.R., Yang, K.S., Ahn, Y., Kim, Y.J., Stadtman, E.R., and Rhee, S.G. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419-16424. crossref(new window)

22.
Latimer, H.R., and Veal, E.A. (2016). Peroxiredoxins in regulation of MAPK signalling pathways; sensors and barriers to signal transduction. Mol. Cells 39, 40-45. crossref(new window)

23.
Lee, S.R., Kwon, K.S., Kim, S.R., and Rhee, S.G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366-15372. crossref(new window)

24.
Lim, J.M., Lee, K.S., Woo, H.A., Kang, D., and Rhee, S.G. (2015). Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J. Cell Biol. 210, 23-33.

25.
Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., and Denicola, A. (2009). The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys. 484, 146-154. crossref(new window)

26.
Moon, J.C., Hah, Y.S., Kim, W.Y., Jung, B.G., Jang, H.H., Lee, J.R., Kim, S.Y., Lee, Y.M., Jeon, M.G., Kim, C.W., et al. (2005). Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to $H_2O_2$-induced cell death. J. Biol. Chem. 280, 28775-28784. crossref(new window)

27.
Mullen, L., Hanschmann, E.M., Lillig, C.H., Herzenberg, L.A., and Ghezzi, P. (2015). Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion. Mol. Med. 21, 98-108. crossref(new window)

28.
Nadeau, P.J., Charette, S.J., Toledano, M.B., and Landry, J. (2007). Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol. Biol. Cell 18, 3903-3913. crossref(new window)

29.
Nakamura, T., Kado, Y., Yamaguchi, T., Matsumura, H., Ishikawa, K., and Inoue, T. (2010). Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide. J. Biochem. 147, 109-115. crossref(new window)

30.
Nelson, K.J., Knutson, S.T., Soito, L., Klomsiri, C., Poole, L.B., and Fetrow, J.S. (2011). Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 79, 947-964. crossref(new window)

31.
Netto, L.E.S., and Antunes, F. (2016). The roles of peroxiredoxin and thioredoxin in hydrogen reroxide sensing and in signal transduction. Mol. Cells 39, 65-71. crossref(new window)

32.
O'Neill, J.S., and Reddy, A.B. (2011). Circadian clocks in human red blood cells. Nature 469, 498-503. crossref(new window)

33.
O'Neill, J.S., van Ooijen, G., Dixon, L.E., Troein, C., Corellou, F., Bouget, F.Y., Reddy, A.B., and Millar, A.J. (2011). Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554-558. crossref(new window)

34.
Olmedo, M., O'Neill, J.S., Edgar, R.S., Valekunja, U.K., Reddy, A.B., and Merrow, M. (2012). Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 109, 20479-20484. crossref(new window)

35.
Parsonage, D., Nelson, K.J., Ferrer-Sueta, G., Alley, S., Karplus, P.A., Furdui, C.M., and Poole, L.B. (2015). Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC. Biochemistry 54, 1567-1575. crossref(new window)

36.
Perkins, A., Nelson, K.J., Parsonage, D., Poole, L.B., and Karplus, P.A. (2015). Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 40, 435-445. crossref(new window)

37.
Poole, L.B., and Nelson, K.J. (2016). Distribution and features of the six classes of peroxiredoxins. Mol. Cells 39, 53-59. crossref(new window)

38.
Putker, M., and O'Nell, J.H. (2016). Reciprocal control of the circadian clock and cellular redox state - a critical appraisal. Mol. Cells 39, 6-19. crossref(new window)

39.
Rhee, S.G. (2006). Cell signaling. $H_2O_2$, a necessary evil for cell signaling. Science 312, 1882-1883. crossref(new window)

40.
Rhee, S.G., Kang, S.W., Chang, T.S., Jeong, W., and Kim, K. (2001). Peroxiredoxin, a novel family of peroxidases. IUBMB life 52, 35-41. crossref(new window)

41.
Rhee, S.G., Chae, H.Z., and Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Rad. Biol. Med. 38, 1543-1552. crossref(new window)

42.
Rhee, S.G., Woo, H.A., Kil, I.S., and Bae, S.H. (2012). Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287, 4403-4410. crossref(new window)

43.
Riddell, J.R., Wang, X.Y., Minderman, H., and Gollnick, S.O. (2010). Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4. J. Immunol. 184, 1022-1030. crossref(new window)

44.
Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596-2606. crossref(new window)

45.
Salzano, S., Checconi, P., Hanschmann, E.M., Lillig, C.H., Bowler, L.D., Chan, P., Vaudry, D., Mengozzi, M., Coppo, L., Sacre, S., et al. (2014). Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc. Natl. Acad. Sci. USA 111, 12157-12162. crossref(new window)

46.
Shichita, T., Hasegawa, E., Kimura, A., Morita, R., Sakaguchi, R., Takada, I., Sekiya, T., Ooboshi, H., Kitazono, T., Yanagawa, T., et al. (2012). Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 18, 911-917. crossref(new window)

47.
Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for $H_2O_2$ signaling. Nat. Chem. Biol. 11, 64-70.

48.
Sun, H.N., Kim, S.U., Huang, S.M., Kim, J.M., Park, Y.H., Kim, S.H., Yang, H.Y., Chung, K.J., Lee, T.H., Choi, H.S., et al. (2010). Microglial peroxiredoxin V acts as an inducible anti-inflammatory antioxidant through cooperation with redox signaling cascades. J. Neurochem. 114, 39-50.

49.
Tartaglia, L.A., Storz, G., Brodsky, M.H., Lai, A., and Ames, B.N. (1990). Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J. Biol. Chem. 265, 10535-10540.

50.
Toledano, M.B., and Huang, B. (2016). Microbial 2-Cys Prxs: insights into their complex physiological roles. Mol. Cells 39, 31-39. crossref(new window)

51.
Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.P., Knoops, B., and Radi, R. (2007). Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem Biophys. 467, 95-106. crossref(new window)

52.
Van Laer, K., and Dick, T.P. (2016). Utilizing natural and engineered peroxiredoxins as intracellular peroxide reporters. Mol. Cells 39, 46-52. crossref(new window)

53.
Vivancos, A.P., Castillo, E.A., Biteau, B., Nicot, C., Ayte, J., Toledano, M.B., and Hidalgo, E. (2005). A cysteine-sulfinic acid in peroxiredoxin regulates $H_2O_2$-sensing by the antioxidant Pap1 pathway. Proc. Natl. Acad. Sci. USA 102, 8875-8880. crossref(new window)

54.
Winterbourn, C.C. (2013). The biological chemistry of hydrogen peroxide. Methods Enzymol. 528, 3-25. crossref(new window)

55.
Winterbourn, C.C., Peskin, A.V. (2016). Kinetic approaches to measuring peroxiredoxin reactivity. Mol. Cells 39, 26-30. crossref(new window)

56.
Woo, H.A., Kang, S.W., Kim, H.K., Yang, K.S., Chae, H.Z., and Rhee, S.G. (2003). Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteinecontaining sequence. J. Biol. Chem. 278, 47361-47364. crossref(new window)

57.
Woo, H.A., Yim, S.H., Shin, D.H., Kang, D., Yu, D.Y., and Rhee, S.G. (2010). Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140, 517-528. crossref(new window)

58.
Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003a). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653. crossref(new window)

59.
Wood, Z.A., Schroder, E., Robin Harris, J., and Poole, L.B. (2003b). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32-40. crossref(new window)

60.
Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., and Rhee, S.G. (2002). Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem 277, 38029-38036. crossref(new window)