JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Peroxiredoxins and the Regulation of Cell Death
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 1,  2016, pp.72-76
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2351
 Title & Authors
Peroxiredoxins and the Regulation of Cell Death
Hampton, Mark B.; O`Connor, Karina M.;
  PDF(new window)
 Abstract
Cell death pathways such as apoptosis can be activated in response to oxidative stress, enabling the disposal of damaged cells. In contrast, controlled intracellular redox events are proposed to be a significant event during apoptosis signaling, regardless of the initiating stimulus. In this scenario oxidants act as second messengers, mediating the post-translational modification of specific regulatory proteins. The exact mechanism of this signaling is unclear, but increased understanding offers the potential to promote or inhibit apoptosis through modulating the redox environment of cells. Peroxiredoxins are thiol peroxidases that remove hydroperoxides, and are also emerging as important players in cellular redox signaling. This review discusses the potential role of peroxiredoxins in the regulation of apoptosis, and also their ability to act as biomarkers of redox changes during the initiation and progression of cell death.
 Keywords
apoptosis;hydrogen peroxide;mitochondria;peroxiredoxins;redox signaling;
 Language
English
 Cited by
1.
Engineered M13 Nanofiber Accelerates Ischemic Neovascularization by Enhancing Endothelial Progenitor Cells, Tissue Engineering and Regenerative Medicine, 2017  crossref(new windwow)
2.
Inhibition of reductase systems by 2-AAPA modulates peroxiredoxin oxidation and mitochondrial function in A172 glioblastoma cells, Toxicology in Vitro, 2017, 42, 273  crossref(new windwow)
3.
Mitochondrial peroxiredoxins are essential in regulating the relationship between Drosophila immunity and aging, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2017, 1863, 1, 68  crossref(new windwow)
4.
Mazes of Nrf2 regulation, Biochemistry (Moscow), 2017, 82, 5, 556  crossref(new windwow)
5.
Overview on Peroxiredoxin, Molecules and Cells, 2016, 39, 1, 1  crossref(new windwow)
6.
Knockdown of Broad-Complex Gene Expression of Bombyx mori by Oligopyrrole Carboxamides Enhances Silk Production, Scientific Reports, 2017, 7, 1  crossref(new windwow)
7.
Silencing peroxiredoxin-2 sensitizes human colorectal cancer cells to ionizing radiation and oxaliplatin, Cancer Letters, 2017, 388, 312  crossref(new windwow)
8.
Selenium and redox signaling, Archives of Biochemistry and Biophysics, 2017, 617, 48  crossref(new windwow)
9.
Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles, Journal of Biomolecular Structure and Dynamics, 2017, 35, 12, 2565  crossref(new windwow)
 References
1.
Adams, J.M., and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326. crossref(new window)

2.
Bonini, M.G., Rota, C., Tomasi, A., and Mason, R.P. (2006). The oxidation of 2',7'-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic. Biol. Med. 40, 968-975. crossref(new window)

3.
Brown, K.K., Eriksson, S.E., Arner, E.S., and Hampton, M.B. (2008). Mitochondrial peroxiredoxin 3 is rapidly oxidized in cells treated with isothiocyanates. Free Radic. Biol. Med. 45, 494-502. crossref(new window)

4.
Burkitt, M.J., and Wardman, P. (2001). Cytochrome C is a potent catalyst of dichlorofluorescin oxidation: implications for the role of reactive oxygen species in apoptosis. Biochem. Biophys. Res. Commun. 282, 329-333. crossref(new window)

5.
Chang, T.S., Cho, C.S., Park, S., Yu, S.Q., Kang, S.W., and Rhee, S.G. (2004). Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J. Biol. Chem. 279, 41975-41984. crossref(new window)

6.
Choi, J.H., Kim, T.N., Kim, S., Baek, S.H., Kim, J.H., Lee, S.R., and Kim, J.R. (2002). Overexpression of mitochondrial thioredoxin reductase and peroxiredoxin III in hepatocellular carcinomas. Anticancer Res. 22, 3331-3335.

7.
Cox, A.G., Brown, K.K., Arner, E.S., and Hampton, M.B. (2008a). The thioredoxin reductase inhibitor auranofin triggers apoptosis through a Bax/Bak-dependent process that involves peroxiredoxin 3 oxidation. Biochem. Pharmacol. 76, 1097-1109. crossref(new window)

8.
Cox, A.G., Pullar, J.M., Hughes, G., Ledgerwood, E.C., and Hampton, M.B. (2008b). Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis. Free Radic. Biol. Med. 44, 1001-1009. crossref(new window)

9.
Cox, A.G., Peskin, A.V., Paton, L.N., Winterbourn, C.C., and Hampton, M.B. (2009). Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 48, 6495-6501. crossref(new window)

10.
Cox, A.G., Winterbourn, C.C., and Hampton, M.B. (2010). Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 425, 313-325. crossref(new window)

11.
Cunniff, B., Newick, K., Nelson, K.J., Wozniak, A.N., Beuschel, S., Leavitt, B., Bhave, A., Butnor, K., Koenig, A., Chouchani, E.T., et al. (2015). Disabling Mitochondrial Peroxide Metabolism via Combinatorial Targeting of Peroxiredoxin 3 as an Effective Therapeutic Approach for Malignant Mesothelioma. PLoS One 10, e0127310. crossref(new window)

12.
D'Alessio, M., De Nicola, M., Coppola, S., Gualandi, G., Pugliese, L., Cerella, C., Cristofanon, S., Civitareale, P., Ciriolo, M.R., Bergamaschi, A., et al. (2005). Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB J. 19, 1504-1506.

13.
Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G.D., Mitchison, T.J., Moskowitz, M.A., and Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112-119. crossref(new window)

14.
Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation. Cell 111, 471-481. crossref(new window)

15.
Finkel, T. (2000). Redox-dependent signal transduction. FEBS Lett. 476, 52-54. crossref(new window)

16.
Garcia-Perez, C., Roy, S.S., Naghdi, S., Lin, X., Davies, E. and Hajnoczky, G. (2012). Bid-induced mitochondrial membrane permeabilization waves propagated by local reactive oxygen species (ROS) signaling. Proc. Natl. Acad. Sci. USA 109, 4497-4502. crossref(new window)

17.
Goossens, V., Grooten, J., De Vos, K., and Fiers, W. (1995). Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc. Natl. Acad. Sci. USA 92, 8115-8119. crossref(new window)

18.
Hampton, M.B., and Orrenius, S. (1997). Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett. 414, 552-556. crossref(new window)

19.
Hampton, M.B., Stamenkovic, I., and Winterbourn, C.C. (2002). Interaction with substrate sensitises caspase-3 to inactivation by hydrogen peroxide. FEBS Lett. 517, 229-232. crossref(new window)

20.
Han, S., Shen, H., Jung, M., Hahn, B.S., Jin, B.K., Kang, I., Ha, J., and Choe, W. (2012). Expression and prognostic significance of human peroxiredoxin isoforms in endometrial cancer. Oncol. Lett. 3, 1275-1279.

21.
Hayakawa, M., Miyashita, H., Sakamoto, I., Kitagawa, M., Tanaka, H., Yasuda, H., Karin, M., and Kikugawa, K. (2003). Evidence that reactive oxygen species do not mediate NF-kappaB activation. EMBO J. 22, 3356-3366. crossref(new window)

22.
Hu, J.X., Gao, Q., and Li, L. (2013). Peroxiredoxin 3 is a novel marker for cell proliferation in cervical cancer. Biomed. Rep. 1, 228-230.

23.
Ichimiya, S., Davis, J.G., O'Rourke, D.M., Katsumata, M., and Greene, M.I. (1997). Murine thioredoxin peroxidase delays neuronal apoptosis and is expressed in areas of the brain most susceptible to hypoxic and ischemic injury. DNA Cell Biol. 16, 311-321. crossref(new window)

24.
Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635. crossref(new window)

25.
Jarvis, R.M., Hughes, S.M., and Ledgerwood, E.C. (2012). Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 53, 1522-1530. crossref(new window)

26.
Kagan, V.E., Tyurin, V.A., Jiang, J., Tyurina, Y.Y., Ritov, V.B., Amoscato, A.A., Osipov, A.N., Belikova, N.A., Kapralov, A.A., Kini, V., et al. (2005). Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1, 223-232. crossref(new window)

27.
Kim, Y.S., Morgan, M.J., Choksi, S., and Liu, Z.G. (2007). TNFinduced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26, 675-687. crossref(new window)

28.
Kinnula, V.L., Lehtonen, S., Sormunen, R., Kaarteenaho-Wiik, R., Kang, S.W., Rhee, S.G., and Soini, Y. (2002). Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma. J. Pathol. 196, 316-323. crossref(new window)

29.
Lee, T.H., Kim, S.U., Yu, S.L., Kim, S.H., Park, D.S., Moon, H.B., Dho, S.H., Kwon, K.S., Kwon, H.J., Han, Y.H., et al. (2003). Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101, 5033-5038. crossref(new window)

30.
Li, L., Shoji, W., Takano, H., Nishimura, N., Aoki, Y., Takahashi, R., Goto, S., Kaifu, T., Takai, T., and Obinata, M. (2007). Increased susceptibility of MER5 (peroxiredoxin III) knockout mice to LPS-induced oxidative stress. Biochem. Biophys. Res. Commun. 355, 715-721. crossref(new window)

31.
Li, G., Xie, B., Li, X., Chen, Y., Xu, Y., Xu-Welliver, M., and Zou, L. (2015). Downregulation of peroxiredoxin-1 by beta-elemene enhances the radiosensitivity of lung adenocarcinoma xenografts. Oncol. Rep. 33, 1427-1433.

32.
Lin, Y., Choksi, S., Shen, H.M., Yang, Q.F., Hur, G.M., Kim, Y.S., Tran, J.H., Nedospasov, S.A., and Liu, Z.G. (2004). Tumor necrosis factor-induced nonapoptotic cell death requires receptorinteracting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem. 279, 10822-10828. crossref(new window)

33.
Liu, C.X., Yin, Q.Q., Zhou, H.C., Wu, Y.L., Pu, J.X., Xia, L., Liu, W., Huang, X., Jiang, T., Wu, M.X., et al. (2012.) Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells. Nat. Chem. Biol. 8, 486-493. crossref(new window)

34.
Meng, T.C., Fukada, T., and Tonks, N.K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387-399. crossref(new window)

35.
Mukhopadhyay, S.S., Leung, K.S., Hicks, M.J., Hastings, P.J., Youssoufian, H., and Plon, S.E. (2006). Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. J. Cell Biol. 175, 225-235. crossref(new window)

36.
Murphy, J.M., Czabotar, P.E., Hildebrand, J.M., Lucet, I.S., Zhang, J.G., Alvarez-Diaz, S., Lewis, R., Lalaoui, N., Metcalf, D., Webb, A.I., et al. (2013). The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443-453. crossref(new window)

37.
Myers, C.R. (2015). Enhanced targeting of mitochondrial peroxide defense by the combined use of thiosemicarbazones and inhibitors of thioredoxin reductase. Free Radic. Biol. Med. 91, 81-92.

38.
Neumann, C.A., Krause, D.S., Carman, C.V., Das, S., Dubey, D.P., Abraham, J.L., Bronson, R.T., Fujiwara, Y., Orkin, S.H., and Van Etten, R.A. (2003). Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424, 561-565. crossref(new window)

39.
Noh, D.Y., Ahn, S.J., Lee, R.A., Kim, S.W., Park, I.A., and Chae, H.Z. (2001). Overexpression of peroxiredoxin in human breast cancer. Anticancer Res. 21, 2085-2090.

40.
Nonn, L., Berggren, M., and Powis, G. (2003). Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin-peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol. Cancer Res. 1, 682-689.

41.
Ogusucu, R., Rettori, D., Munhoz, D.C., Netto, L.E., and Augusto, O. (2007). Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic. Biol. Med. 42, 326-334. crossref(new window)

42.
Park, J.H., Kim, Y.S., Lee, H.L., Shim, J.Y., Lee, K.S., Oh, Y.J., Shin, S.S., Choi, Y.H., Park, K.J., Park, R.W., et al. (2006). Expression of peroxiredoxin and thioredoxin in human lung cancer and paired normal lung. Respirology 11, 269-275. crossref(new window)

43.
Parsonage, D., Youngblood, D.S., Sarma, G.N., Wood, Z.A., Karplus, P.A., and Poole, L.B. (2005). Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44, 10583-10592. crossref(new window)

44.
Peskin, A.V., Low, F.M., Paton, L.N., Maghzal, G.J., Hampton, M.B., and Winterbourn, C.C. (2007). The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282, 11885-11892. crossref(new window)

45.
Poynton, R.A., and Hampton, M.B. (2014). Peroxiredoxins as biomarkers of oxidative stress. Biochim. Biophys. Acta 1840, 906-912. crossref(new window)

46.
Radjainia, M., Venugopal, H., Desfosses, A., Phillips, A.J., Yewdall, N.A., Hampton, M.B., Gerrard, J.A., and Mitra, A.K. (2015). Cryo-electron microscopy structure of human peroxiredoxin-3 filament reveals the assembly of a putative chaperone. Structure 23, 912-920. crossref(new window)

47.
Rhee, S.G., Chae, H.Z., and Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38, 1543-1552. crossref(new window)

48.
Salvesen, G.S., and Dixit, V.M. (1997). Caspases: intracellular signaling by proteolysis. Cell 91, 443-446. crossref(new window)

49.
Schulze-Osthoff, K., Bakker, A.C., Vanhaesebroeck, B., Beyaert, R., Jacob, W.A., and Fiers, W. (1992). Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317-5323.

50.
Scotcher, J., Clarke, D.J., Weidt, S.K., Mackay, C.L., Hupp, T.R., Sadler, P.J., and Langridge-Smith, P.R. (2011). Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 888-897. crossref(new window)

51.
Shih, S.F., Wu, Y.H., Hung, C.H., Yang, H.Y., and Lin, J.Y. (2001). Abrin triggers cell death by inactivating a thiol-specific antioxidant protein. J. Biol. Chem. 276, 21870-21877. crossref(new window)

52.
Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64-70.

53.
Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W., Lei, X., et al. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213-227. crossref(new window)

54.
Trzeciecka, A., Klossowski, S., Bajor, M., Zagozdzon, R., Gaj, P., Muchowicz, A., Malinowska, A., Czerwoniec, A., Barankiewicz, J., Domagala, A., et al. (2015). Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget [Epub ahead of print]

55.
Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Vandenabeele, P. (2014). Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat.Rev. Mol. Cell Biol. 15, 135-147.

56.
Wang, X.Y., Wang, H.J., and Li, X.Q. (2013). Peroxiredoxin III protein expression is associated with platinum resistance in epithelial ovarian cancer. Tumour Biol. 34, 2275-2281. crossref(new window)

57.
Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, L.F., Wang, F.S., and Wang, X. (2014). Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133-146. crossref(new window)

58.
Whitaker, H.C., Patel, D., Howat, W.J., Warren, A.Y., Kay, J.D., Sangan, T., Marioni, J.C., Mitchell, J., Aldridge, S., Luxton, H.J., et al. (2013). Peroxiredoxin-3 is overexpressed in prostate cancer and promotes cancer cell survival by protecting cells from oxidative stress. Br. J. Cancer 109, 983-993. crossref(new window)

59.
Winterbourn, C.C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278-286. crossref(new window)

60.
Winterbourn, C.C., and Hampton, M.B. (2008). Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549-561. crossref(new window)

61.
Wonsey, D.R., Zeller, K.I., and Dang, C.V. (2002). The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc. Natl. Acad. Sci. USA 99, 6649-6654. crossref(new window)

62.
Wood, Z.A., Poole, L.B., Hantgan, R.R. and Karplus, P.A. (2002). Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41, 5493-5504. crossref(new window)

63.
Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003a). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653. crossref(new window)

64.
Wood, Z.A., Schroder, E., Harris, J.R., and Poole, L.B. (2003b). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32-40. crossref(new window)

65.
Zhang, P., Liu, B., Kang, S.W., Seo, M.S., Rhee, S.G., and Obeid, L.M. (1997). Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J. Biol. Chem. 272, 30615-30618. crossref(new window)

66.
Zhang, H., Go, Y.M., and Jones, D.P. (2007). Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress. Arch. Biochem. Biophys. 465, 119-126. crossref(new window)