JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MiR-29a and MiR-140 Protect Chondrocytes against the Anti-Proliferation and Cell Matrix Signaling Changes by IL-1β
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 2,  2016, pp.103-110
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2179
 Title & Authors
MiR-29a and MiR-140 Protect Chondrocytes against the Anti-Proliferation and Cell Matrix Signaling Changes by IL-1β
Li, Xianghui; Zhen, Zhilei; Tang, Guodong; Zheng, Chong; Yang, Guofu;
  PDF(new window)
 Abstract
As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metallopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL- on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL- treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-, thereby suggesting potent synergistic action. These results provided1novel insights into the important function of miRNAs` collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.
 Keywords
microRNA;miR-29a;miR-140;osteoarthritis;
 Language
English
 Cited by
1.
Morphological, Immunocytochemical, and Biochemical Studies of Rat Costal Chondrocytes Exposed to IL-1β and TGF-β1, Journal of Healthcare Engineering, 2017, 2017, 1  crossref(new windwow)
2.
miR-29a regulates vascular neointimal hyperplasia by targeting YY1, Cell Proliferation, 2017, 50, 3, e12322  crossref(new windwow)
3.
microRNA-140 Inhibits Inflammation and Stimulates Chondrogenesis in a Model of Interleukin 1β-induced Osteoarthritis, Molecular Therapy - Nucleic Acids, 2016, 5, e373  crossref(new windwow)
4.
MicroRNAs and Autophagy: Fine Players in the Control of Chondrocyte Homeostatic Activities in Osteoarthritis, Oxidative Medicine and Cellular Longevity, 2017, 2017, 1  crossref(new windwow)
 References
1.
Bandi, N., and Vassella, E. (2011). miR-34a and miR-15a/16 are coregulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol. Cancer 10, 55. crossref(new window)

2.
Diaz-Prado, S., Cicione, C., Muinos-Lopez, E., Hermida-Gomez, T., Oreiro, N., Fernandez-Lopez, C., and Blanco, F.J. (2012). Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord. 13, 144. crossref(new window)

3.
Dong, C.G., Wu, W.K., Feng, S.Y., Wang, X.J., Shao, J.F., and Qiao, J. (2012). Co-inhibition of microRNA-10b and microRNA-21 exerts synergistic inhibition on the proliferation and invasion of human glioma cells. Int. J. Oncol. 41, 1005-1012.

4.
Etich, J., Holzer, T., Pitzler, L., Bluhm, B., and Brachvogel, B. (2015). MiR-26a modulates extracellular matrix homeostasis in cartilage. Matrix Biol. 43, 27-34. crossref(new window)

5.
Gosset, M., Berenbaum, F., Thirion, S., and Jacques, C. (2008). Primary culture and phenotyping of murine chondrocytes. Nat. Protoc. 3, 1253-1260. crossref(new window)

6.
Guerit, D., Brondello, J.M., Chuchana, P., Philipot, D., Toupet, K., Bony, C., Jorgensen, C., and Noel, D. (2014). FOXO3A regulation by miRNA-29a Controls chondrogenic differentiation of mesenchymal stem cells and cartilage formation. Stem Cells Dev. 23, 1195-1205. crossref(new window)

7.
Hsieh, J.L., Shiau, A.L., Lee, C.H., Yang, S.J., Lee, B.O., Jou, I.M., Wu, C.L., Chen, S.H., and Shen, P.C. (2013). CD8+ T cellinduced expression of tissue inhibitor of metalloproteinses-1 exacerbated osteoarthritis. Int. J. Mol. Sci. 14, 19951-19970. crossref(new window)

8.
Hu, S., Huang, M., Nguyen, P.K., Gong, Y., Li, Z., Jia, F., Lan, F., Liu, J., Nag, D., Robbins, R.C., et al. (2011). Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation. Circulation 124, S27-34. crossref(new window)

9.
Kwiecinski, M., Noetel, A., Elfimova, N., Trebicka, J., Schievenbusch, S., Strack, I., Molnar, L., von Brandenstein, M., Tox, U., Nischt, R., et al. (2011). Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction. PLoS One 6, e24568. crossref(new window)

10.
Lark, M.W., Bayne, E.K., Flanagan, J., Harper, C.F., Hoerrner, L.A., Hutchinson, N.I., Singer, II, Donatelli, S.A., Weidner, J.R., Williams, H.R., et al. (1997). Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J. Clin. Invest 100, 93-106. crossref(new window)

11.
Le, L.T., Swingler, T.E., and Clark, I.M. (2013). Review: the role of microRNAs in osteoarthritis and chondrogenesis. Arthritis Rheum. 65, 1963-1974. crossref(new window)

12.
Lehar, J., Krueger, A.S., Avery, W., Heilbut, A.M., Johansen, L.M., Price, E.R., Rickles, R.J., Short, G.F., 3rd, Staunton, J.E., Jin, X., et al. (2009). Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659-666. crossref(new window)

13.
Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. crossref(new window)

14.
Matsukawa, T., Sakai, T., Yonezawa, T., Hiraiwa, H., Hamada, T., Nakashima, M., Ono, Y., Ishizuka, S., Nakahara, H., Lotz, M.K., et al. (2013). MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res. Ther. 15, R28. crossref(new window)

15.
Maurer, B., Stanczyk, J., Jungel, A., Akhmetshina, A., Trenkmann, M., Brock, M., Kowal-Bielecka, O., Gay, R.E., Michel, B.A., Distler, J.H., et al. (2010). MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62, 1733-1743.

16.
Miyaki, S., and Asahara, H. (2012). Macro view of microRNA function in osteoarthritis. Nat. Rev. Rheumatol. 8, 543-552. crossref(new window)

17.
Miyaki, S., Sato, T., Inoue, A., Otsuki, S., Ito, Y., Yokoyama, S., Kato, Y., Takemoto, F., Nakasa, T., Yamashita, S., et al. (2010). MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24, 1173-1185. crossref(new window)

18.
Murray, D.H., Bush, P.G., Brenkel, I.J., and Hall, A.C. (2010). Abnormal human chondrocyte morphology is related to increased levels of cell-associated IL-1beta and disruption to pericellular collagen type VI. J. Orthop. Res. 28, 1507-1514. crossref(new window)

19.
Noguchi, S., Yasui, Y., Iwasaki, J., Kumazaki, M., Yamada, N., Naito, S., and Akao, Y. (2013). Replacement treatment with microRNA- 143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett. 328, 353-361. crossref(new window)

20.
Park, J.K., Lee, E.J., Esau, C., and Schmittgen, T.D. (2009). Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38, e190-199. crossref(new window)

21.
Park, S.J., Cheon, E.J., Lee, M.H., and Kim, H.A. (2013). MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes. Arthritis Rheum. 65, 3141-3152. crossref(new window)

22.
Pencheva, N., Tran, H., Buss, C., Huh, D., Drobnjak, M., Busam, K., and Tavazoie, S.F. (2012). Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151, 1068-1082. crossref(new window)

23.
Salvat, C., Pigenet, A., Humbert, L., Berenbaum, F., and Thirion, S. (2005). Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage. Osteoarthritis Cartilage 13, 243-249. crossref(new window)

24.
Santini, P., Politi, L., Vedova, P.D., Scandurra, R., and Scotto d'Abusco, A. (2014). The inflammatory circuitry of miR-149 as a pathological mechanism in osteoarthritis. Rheumatol. Int. 34, 711-716. crossref(new window)

25.
Small, E.M., and Olson, E.N. (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336-342. crossref(new window)

26.
Song, J., Lee, M., Kim, D., Han, J., Chun, C.H., and Jin, E.J. (2013). MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res. Commun. 431, 210-214. crossref(new window)

27.
Swingler, T.E., Wheeler, G., Carmont, V., Elliott, H.R., Barter, M.J., Abu-Elmagd, M., Donell, S.T., Boot-Handford, R.P., Hajihosseini, M.K., Munsterberg, A., et al. (2012). The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 64, 1909-1919. crossref(new window)

28.
Wang, B., Komers, R., Carew, R., Winbanks, C.E., Xu, B., Herman- Edelstein, M., Koh, P., Thomas, M., Jandeleit-Dahm, K., Gregorevic, P., et al. (2012). Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23, 252-265. crossref(new window)

29.
Wang, M., Sampson, E.R., Jin, H., Li, J., Ke, Q.H., Im, H.J., and Chen, D. (2013). MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis. Res. Ther. 15, R5. crossref(new window)

30.
Xu, J., Li, C.X., Li, Y.S., Lv, J.Y., Ma, Y., Shao, T.T., Xu, L.D., Wang, Y.Y., Du, L., Zhang, Y.P., et al. (2011). MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res. 39, 825- 836. crossref(new window)

31.
Yamasaki, K., Nakasa, T., Miyaki, S., Ishikawa, M., Deie, M., Adachi, N., Yasunaga, Y., Asahara, H., and Ochi, M. (2009). Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum 60, 1035-1041. crossref(new window)

32.
Zhang, R., Ma, J., and Yao, J. (2013). Molecular mechanisms of the cartilage-specific microRNA-140 in osteoarthritis. Inflamm. Res. 62, 871-877. crossref(new window)

33.
Zhu, W., Zhao, Y., Xu, Y., Sun, Y., Wang, Z., Yuan, W., and Du, Z. (2013). Dissection of protein interactomics highlights microRNA synergy. PLoS One 8, e63342. crossref(new window)