Advanced SearchSearch Tips
A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 2,  2016, pp.111-118
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2188
 Title & Authors
A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling
Baek, Dongwon; Chun, Hyun Jin; Kang, Songhwa; Shin, Gilok; Park, Su Jung; Hong, Hyewon; Kim, Chanmin; Kim, Doh Hoon; Lee, Sang Yeol; Kim, Min Chul; Yun, Dae-Jin;
  PDF(new window)
MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.
ABA;abiotic stress;arabidopsis;drought;microRNA;salt;
 Cited by
Role of microRNAs and their target genes in salinity response in plants, Plant Growth Regulation, 2017, 82, 3, 377  crossref(new windwow)
MYBs affect the variation in the ratio of anthocyanin and flavanol in fruit peel and flesh in response to shade, Journal of Photochemistry and Photobiology B: Biology, 2017, 168, 40  crossref(new windwow)
Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi- Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78. crossref(new window)

Aung, K., Lin, S.I., Wu, C.C., Huang, Y.T., Su, C.L., and Chiou, T.J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141, 1000-1011. crossref(new window)

Baek, D., Kim, M.C., Chun, H.J., Kang, S., Park, H.C., Shin, G., Park, J., Shen, M., Hong, H., Kim, W.Y., et al. (2013). Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. Plant Physiol. 161, 362-373. crossref(new window)

Bari, R., Datt Pant, B., Stitt, M., and Scheible, W.R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988-999. crossref(new window)

Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. crossref(new window)

Brotman, Y., Lisec, J., Meret, M., Chet, I., Willmitzer, L., and Viterbo, A. (2012). Transcript and metabolite analysis of the Trichoderma- induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158, 139-146. crossref(new window)

Buhtz, A., Springer, F., Chappell, L., Baulcombe, D.C., and Kehr, J. (2008). Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 53, 739-749. crossref(new window)

Chao, D.Y., Luo, Y.H., Shi, M., Luo, D., and Lin, H.X. (2005). Saltresponsive genes in rice revealed by cDNA microarray analysis. Cell Res. 15, 796-810. crossref(new window)

Chen, H., Li, Z., and Xiong, L. (2012). A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett. 586, 1742- 1747. crossref(new window)

Chinnusamy, V., and Zhu, J.K. (2009). Epigenetic regulation of stress responses in plants. Curr. Opin. Plant Biol. 12, 133-139. crossref(new window)

Cushman, J.C., and Bohnert, H.J. (2000). Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol. 3, 117-124. crossref(new window)

Fagard, M., Dellagi, A., Roux, C., Perino, C., Rigault, M., Boucher, V., Shevchik, V.E., and Expert, D. (2007). Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi. Mol. Plant Microbe. Interact. 20, 794-805. crossref(new window)

Finkelstein, R., Gampala, S.S., Lynch, T.J., Thomas, T.L., and Rock, C.D. (2005). Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol. Biol. 59, 253-267. crossref(new window)

Fujii, H., Chiou, T.J., Lin, S.I., Aung, K., and Zhu, J.K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 2038-2043. crossref(new window)

Guo, H.S., Xie, Q., Fei, J.F., and Chua, N.H. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17, 1376-1386. crossref(new window)

Hsieh, L.C., Lin, S.I., Shih, A.C., Chen, J.W., Lin, W.Y., Tseng, C.Y., Li, W.H., and Chiou, T.J. (2009). Uncovering small RNAmediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151, 2120-2132. crossref(new window)

Jagadeeswaran, G., Saini, A., and Sunkar, R. (2009). Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229, 1009-1014. crossref(new window)

Jia, X., Wang, W.X., Ren, L., Chen, Q.J., Mendu, V., Willcut, B., Dinkins, R., Tang, X., and Tang, G. (2009). Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol. Biol. 71, 51-59. crossref(new window)

Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B. (2006). Micro- RNAS and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19-53. crossref(new window)

Katiyar-Agarwal, S., and Jin, H. (2010). Role of small RNAs in hostmicrobe interactions. Annu. Rev. Phytopathol. 48, 225-246. crossref(new window)

Kim, J.Y., Lee, H.J., Jung, H.J., Maruyama, K., Suzuki, N., and Kang, H. (2010). Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. Planta 232, 1447-1454. crossref(new window)

Li, W.X., Oono, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K., Lu, X.Y., Cui, X., Jin, H., and Zhu, J.K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20, 2238-2251. crossref(new window)

Liang, G., Yang, F., and Yu, D. (2010). MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 62, 1046-1057.

Lin, S.I., Chiang, S.F., Lin, W.Y., Chen, J.W., Tseng, C.Y., Wu, P.C., and Chiou, T.J. (2008). Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol. 147, 732-746. crossref(new window)

Liu, Q., and Chen, Y.Q. (2009). Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem. Biophys. Res. Commun. 384, 1-5. crossref(new window)

Lu, X.Y., and Huang, X.L. (2008). Plant miRNAs and abiotic stress responses. Biochem. Biophys. Res. Commun. 368, 458-462. crossref(new window)

Lu, Y.D., Gan, Q.H., Chi, X.Y., and Qin, S. (2008). Roles of micro- RNA in plant defense and virus offense interaction. Plant Cell Rep. 27, 1571-1579. crossref(new window)

Mallory, A.C., and Vaucheret, H. (2006). Functions of microRNAs and related small RNAs in plants. Nat. Genet. 38, S31-S36. crossref(new window)

Naya, L., Paul, S., Valdes-Lopez, O., Mendoza-Soto, A.B., Nova- Franco, B., Sosa-Valencia, G., Reyes, J.L., and Hernandez, G. (2014). Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One 9, e84416. crossref(new window)

Pant, B.D., Buhtz, A., Kehr, J., and Scheible, W.R. (2008). Micro- RNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53, 731-738. crossref(new window)

Pant, B.D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J., Walther, D., and Scheible, W.R. (2009). Identification of nutrientresponsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 150, 1541-1555. crossref(new window)

Park, M.Y., Kim, S.A., Lee, S.J., and Kim, S.Y. (2013). ATHB17 is a positive regulator of abscisic acid response during early seedling growth. Mol. Cells 35, 125-133. crossref(new window)

Reyes, J.L., and Chua, N.H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J. 49, 592-606. crossref(new window)

Si, Y., Zhang, C., Meng, S., and Dane, F. (2009). Gene expression changes in response to drought stress in Citrullus colocynthis. Plant Cell Rep. 28, 997-1009. crossref(new window)

Sire, C., Moreno, A.B., Garcia-Chapa, M., Lopez-Moya, J.J., and San Segundo, B. (2009). Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398. FEBS Lett. 583, 1039-1044. crossref(new window)

Song, J.B., Gao, S., Sun, D., Li, H., Shu, X.X., and Yang, Z.M. (2013). miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Biol. 13, 210. crossref(new window)

Sunkar, R., and Zhu, J.K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16, 2001-2019. crossref(new window)

Sunkar, R., Kapoor, A., and Zhu, J.K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18, 2051-2065. crossref(new window)

Sunkar, R., Chinnusamy, V., Zhu, J., and Zhu, J.K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 12, 301-309. crossref(new window)

Urao, T., Yamaguchi-Shinozaki, K., Urao, S., and Shinozaki, K. (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5, 1529-1539. crossref(new window)

Vidal, E.A., Araus, V., Lu, C., Parry, G., Green, P.J., Coruzzi, G.M., and Gutierrez, R.A. (2010). Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107, 4477-4482. crossref(new window)

Voinnet, O. (2008). Post-transcriptional RNA silencing in plantmicrobe interactions: a touch of robustness and versatility. Curr. Opin. Plant Biol. 11, 464-470. crossref(new window)

Voinnet, O. (2009). Origin, biogenesis, and activity of plant micro- RNAs. Cell 136, 669-687. crossref(new window)

Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781-803. crossref(new window)

Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., et al. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in arabidopsis. J. Biol. Chem. 280, 3697-3706. crossref(new window)

Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 61, 672-685. crossref(new window)

Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H., and Jin, Y. (2009). Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol. Biol. 8, 10-29.

Zhao, M., Ding, H., Zhu, J.K., Zhang, F., and Li, W.X. (2011). Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol. 190, 906-915. crossref(new window)

Zhou, X., Wang, G., and Zhang, W. (2007). UV-B responsive microRNA genes in Arabidopsis thaliana. Mol. Syst. Biol. 3, 103.

Zhou, X., Wang, G., Sutoh, K., Zhu, J.K., and Zhang, W. (2008). Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim. Biophys. Acta. 1779, 780-788. crossref(new window)