Advanced SearchSearch Tips
De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 2,  2016, pp.141-148
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2264
 Title & Authors
De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa
Kim, Hyun A; Shin, Ah-Young; Lee, Min-Seon; Lee, Hee-Jeong; Lee, Heung-Ryul; Ahn, Jongmoon; Nahm, Seokhyeon; Jo, Sung-Hwan; Park, Jeong Mee; Kwon, Suk-Yoon;
  PDF(new window)
Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family.
genetic linkage map;Korean melon;simple sequence repeat;single-nucleotide polymorphism;transcriptome analysis;
 Cited by
Transcriptome analysis of the oriental melon (Cucumis meloL. var.makuwa) during fruit development, PeerJ, 2017, 5, e2834  crossref(new windwow)
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403- 410. crossref(new window)

Blanca, J.M., Canizares, J., Ziarsolo, P., Esteras, C., Mir, G., Nuez, F., Garcia-Mas, J., and Pico, M.B. (2011). Melon transcriptome characterization: simple sequence repeats and single nucleotide polymorphisms discovery for high throughput genotyping across the species. Plant Genome 4, 118-131. crossref(new window)

Blanca, J., Esteras, C., Ziarsolo, P., Perez, D., Ferna Ndez-Pedrosa, V., Collado, C., Rodra Guez de Pablos, R., Ballester, A., Roig, C., Canizares, J., et al. (2012). Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13, 280. crossref(new window)

Brisson, N., Paszkowski, J., Penswick, J.R., Gronenborn, B., Potrykus, I., and Hohn, T. (1984). Expression of a bacterial gene in plants by using a viral vector. Nature 310, 511-514. crossref(new window)

Cornejo, M.J., Luth, D., Blankenship, K.M., Anderson, O.D., and Blechl, A.E. (1993). Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol. Biol. 23, 567-581. crossref(new window)

Cox, M.P., Peterson, D.A., and Biggs, P.J. (2010). SolexaQA: At-aglance quality assessment of Illumina second-generation sequencing data. BMC Bioinf. 11, 485. crossref(new window)

Diaz, A., Fergany, M., Formisano, G., Ziarsolo, P., Blanca, J., Fei, Z., Staub, J.E., Zalapa, J.E., Cuevas, H.E., Dace, G., et al. (2011). A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol. 11, 111. crossref(new window)

da Maia, L.C., Palmieri, D.A., de Souza, V.Q., Kopp, M.M., de Carvalho, F.I., and Costa de Oliveira, A. (2008). SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int. J. Plant Genomics 2008, 412696.

Gonzalez, V.M., Benjak, A., Henaff, E.M., Mir, G., Casacuberta, J.M., Garcia-Mas, J., and Puigdomenech, P. (2010). Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy. BMC Plant Biol. 10, 246. crossref(new window)

Gonzalez-Ibeas, D., Blanca, J., Roig, C., Gonzalez-To, M., Pico, B., Truniger, V., Gomez, P., Deleu, W., Cano-Delgado, A., Arus, P., et al. (2007). MELOGEN: an EST database for melon functional genomics. BMC Genomics 8, 306. crossref(new window)

Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V.M., Henaff, E., Camara, F., Cozzuto, L., Lowy, E., et al. (2012). The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 109, 11872-11877. crossref(new window)

Garg, R., Patel, R.K., Tyagi, A.K., and Jain, M. (2011). De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res. 18, 53-63. crossref(new window)

Hsieh, T.H., Lee, J.T., Charng, Y.Y., and Chan, M.T. (2002). Tomato plants ectopically expressing arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 130, 618-626. crossref(new window)

Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1- 13. crossref(new window)

Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57. crossref(new window)

Kosambi, D.D. (1943). The estimation of map distance from recombination values. Ann. Eugen. 12, 172-175. crossref(new window)

Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287-291. crossref(new window)

Kasuga, M., Miura, S., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and lowtemperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45, 346-350. crossref(new window)

Kim, J.E., Oh, S.K., Lee, J.H., Lee, B.M., and Jo, S.H. (2014). Genome- wide SNP calling using next generation sequencing data in tomato. Mol. Cells 37, 36-42. crossref(new window)

Kong, Q., Xiang, C., Yu, Z., Zhang, C., Liu, F., Peng, C., and Peng, X. (2007). Mining and charactering microsatellites in Cucumis melo expressed sequence tags from sequence database. Mol. Ecol. Notes 7, 281-283. crossref(new window)

Kong, Q., Xiang, C., Yang, J., and Yu, Z. (2011). Genetic variations of Chinese melon landraces investigated with EST-SSR markers. Hort. Environ. Biotechnol. 52, 163-169. crossref(new window)

Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., and Newberg, L.A. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174-181. crossref(new window)

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/ map format and SAMtools. Bioinformatics 25, 2078-2079. crossref(new window)

Liu, L., Kakihara, F., and Kato, M. (2004). Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit. Euphytica 135, 305-313. crossref(new window)

Mliki, A., Staub, J.E., Zhangyong, S., and Ghorbel, A. (2001). Genetic diversity in melon (Cucumis melo L.): an evaluation of African germplasm. Genet. Resour. Crop Evol. 48, 587-597. crossref(new window)

Neff, M.M., Neff, J.D., Chory, J., and Pepper, A.E. (1998). dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387-392. crossref(new window)

Oliver, M., Garcia-Mas, J., Cardus, M., Pueyo, N., Lopez-Sese, A.L., Arroyo, M., Gomez-Paniagua, H., Arus, P., and de Vicente, M.C. (2001). Construction of a reference linkage map for melon. Genome 44, 836-845. crossref(new window)

Potenza, C., Aleman, L., and Sengupta-Gopalan, C. (2004). Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell. Dev. Biol. Plant 40, 1-22.

Portnoy, V., Diber, A., Pollock, S., Karchi, H., Lev, S., Tzuri, G., Harel-Beja, R., Forer, R., Portnoy, V.H., Lewinsohn, E., et al. (2011). Use of non-normalized, non-amplified cDNA for 454- Based RNA sequencing of fleshy melon fruit. Plant Genome 4, 36-46. crossref(new window)

Rodriguez-Moreno, L., Gonzalez, V.M., Benjak, A., Marti, M.C., Puigdomenech, P., Aranda, M.A., and Garcia-Mas, J. (2011). Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. BMC Genomics 12, 424. crossref(new window)

Rhee, S.Y., Wood, V., Dolinski, K., and Draghici, S. (2008). Use and misuse of the gene ontology annotations. Nat. Rev. Genet. 9, 509-515. crossref(new window)

Schulz, M.H., Zerbino, D.R., Vingron, M., and Birney, E. (2012). Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086-1092. crossref(new window)

Zerbino, D.R., and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821-829. crossref(new window)