Advanced SearchSearch Tips
Characterization of Ca2+-Dependent Protein-Protein Interactions within the Ca2+ Release Units of Cardiac Sarcoplasmic Reticulum
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 2,  2016, pp.149-155
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2284
 Title & Authors
Characterization of Ca2+-Dependent Protein-Protein Interactions within the Ca2+ Release Units of Cardiac Sarcoplasmic Reticulum
Rani, Shilpa; Park, Chang Sik; Sreenivasaiah, Pradeep Kumar; Kim, Do Han;
  PDF(new window)
In the heart, excitation-contraction (E-C) coupling is mediated by release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202-231). Second, in vitro binding assays were conducted to examine the dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of into SR at intermediate concentrations.
calsequestrin;histidine rich binding protein;and triadin;junctin;ryanodine receptor;
 Cited by
Three residues in the luminal domain of triadin impact on Trisk 95 activation of skeletal muscle ryanodine receptors, Pflügers Archiv - European Journal of Physiology, 2016, 468, 11-12, 1985  crossref(new windwow)
Astragaloside IV Inhibits Membrane Ca2+ Current but Enhances Sarcoplasmic Reticulum Ca2+ Release, The American Journal of Chinese Medicine, 2017, 45, 04, 863  crossref(new windwow)
Arvanitis, D.A., Vafiadaki, E., Fan, G.C., Mitton, B.A., Gregory, K.N., Del Monte, F., Kontrogianni-Konstantopoulos, A., Sanoudou, D., and Kranias, E.G. (2007). Histidine-rich Ca-binding protein interacts with sarcoplasmic reticulum Ca-ATPase. Am. J. Physiol. Heart Circ. Physiol. 293, H1581-1589. crossref(new window)

Beard, N.A., Casarotto, M.G., Wei, L., Varsanyi, M., Laver, D.R., and Dulhunty, A.F. (2005). Regulation of ryanodine receptors by calsequestrin: effect of high luminal $Ca^{2+}$ and phosphorylation. Biophys. J. 88, 3444-3454. crossref(new window)

Bers, D.M. (2002). Cardiac excitation-contraction coupling. Nature 415, 198-205. crossref(new window)

Boncompagni, S., Thomas, M., Lopez, J.R., Allen, P.D., Yuan, Q., Kranias, E.G., Franzini-Armstrong, C., and Perez, C.F. (2012). Triadin/Junctin double null mouse reveals a differential role for Triadin and Junctin in anchoring CASQ to the jSR and regulating Ca(2+) homeostasis. PLoS One 7, e39962. crossref(new window)

Fan, G.C., Gregory, K.N., Zhao, W., Park, W.J., and Kranias, E.G. (2004). Regulation of myocardial function by histidine-rich, calcium-binding protein. Am. J. Physiol. Heart Circ. Physiol. 287, H1705-1711. crossref(new window)

Franzini-Armstrong, C., Protasi, F., and Tijskens, P. (2005). The assembly of calcium release units in cardiac muscle. Ann. N. Y. Acad. Sci. 1047, 76-85. crossref(new window)

Goonasekera, S.A., Beard, N.A., Groom, L., Kimura, T., Lyfenko, A.D., Rosenfeld, A., Marty, I., Dulhunty, A.F., and Dirksen, R.T. (2007). Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. J. Gen. Physiol. 130, 365-378. crossref(new window)

Guo, W., and Campbell, K.P. (1995). Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. J. Biol. Chem. 270, 9027-9030. crossref(new window)

Guo, W., Jorgensen, A.O., Jones, L.R., and Campbell, K.P. (1996). Biochemical characterization and molecular cloning of cardiac triadin. J. Biol. Chem. 271, 458-465. crossref(new window)

Gyorke, I., Hester, N., Jones, L.R., and Gyorke, S. (2004). The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys. J. 86, 2121-2128. crossref(new window)

Hasenfuss, G., Meyer, M., Schillinger, W., Preuss, M., Pieske, B., and Just, H. (1997). Calcium handling proteins in the failing human heart. Basic Res. Cardiol. 92 Suppl 1, 87-93.

Jones, L.R., Zhang, L., Sanborn, K., Jorgensen, A.O., and Kelley, J. (1995). Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. J. Biol. Chem. 270, 30787-30796. crossref(new window)

Kim, E., Shin, D.W., Hong, C.S., Jeong, D., Kim, D.H., and Park, W.J. (2003). Increased $Ca^{2+}$ storage capacity in the sarcoplasmic reticulum by overexpression of HRC (histidine-rich $Ca^{2+}$ binding protein). Biochem. Biophys. Res. Commun. 300, 192-196. crossref(new window)

Kim, T., Kahng, Y.H., Lee, T., Lee, K., and Kim, D.H. (2013). Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells. Mol. Cells 36, 577-582. crossref(new window)

Knollmann, B.C. (2009). New roles of calsequestrin and triadin in cardiac muscle. J. Physiol. 587, 3081-3087. crossref(new window)

Kobayashi, Y.M., Alseikhan, B.A., and Jones, L.R. (2000). Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction. J. Biol. Chem. 275, 17639-17646. crossref(new window)

Lee, H.G., Kang, H., Kim, D.H., and Park, W.J. (2001). Interaction of HRC (histidine-rich $Ca^{2+}$-binding protein) and triadin in the lumen of sarcoplasmic reticulum. J. Biol. Chem. 276, 39533-39538. crossref(new window)

Lee, E.H., Rho, S.H., Kwon, S.J., Eom, S.H., Allen, P.D., and Kim, D.H. (2004a). N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor. J. Biol. Chem. 279, 26481-26488. crossref(new window)

Lee, J.M., Rho, S.H., Shin, D.W., Cho, C., Park, W.J., Eom, S.H., Ma, J., and Kim, D.H. (2004b). Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin. J. Biol. Chem. 279, 6994-7000. crossref(new window)

Lehnart, S.E., Maier, L.S., and Hasenfuss, G. (2009). Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail. Rev. 14, 213-224. crossref(new window)

Liu., B., Ho., H.T., Brunello., L., Unudurthi., S.D., Lou., Q., Belevych., A.E., Qian., L., Kim, D.H., Cho., C., Janssen., P.M.L., et al. (2015). Ablation of HRC alleviates cardiac arrhythmia and improves abnormal Ca handling in CASQ2 knockout mice prone to CPVT. Cardiovasc. Res. [in press].

Park, C.S., Cha, H., Kwon, E.J., Jeong, D., Hajjar, R.J., Kranias, E.G., Cho, C., Park, W.J., and Kim, D.H. (2012). AAV-mediated knock-down of HRC exacerbates transverse aorta constrictioninduced heart failure. PLoS One 7, e43282. crossref(new window)

Picello, E., Damiani, E., and Margreth, A. (1992). Low-affinity $Ca^{2+}$- binding sites versus Zn(2+)-binding sites in histidine-rich $Ca^{2+}$- binding protein of skeletal muscle sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 186, 659-667. crossref(new window)

Postma, A.V., Denjoy, I., Hoorntje, T.M., Lupoglazoff, J.M., Da Costa, A., Sebillon, P., Mannens, M.M., Wilde, A.A., and Guicheney, P. (2002). Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 91, e21-26. crossref(new window)

Priori, S.G., and Napolitano, C. (2005). Cardiac and skeletal muscle disorders caused by mutations in the intracellular $Ca^{2+}$ release channels. J. Clin. Invest. 115, 2033-2038. crossref(new window)

Sacchetto, R., Damiani, E., Turcato, F., Nori, A., and Margreth, A. (2001). $Ca^{2+}$-dependent interaction of triadin with histidine-rich $Ca^{2+}$-binding protein carboxyl-terminal region. Biochem. Biophys. Res. Commun. 289, 1125-1134. crossref(new window)

Shin, D.W., Ma, J., and Kim, D.H. (2000). The asp-rich region at the carboxyl-terminus of calsequestrin binds to $Ca^{2+}$ and interacts with triadin. FEBS Lett. 486, 178-182. crossref(new window)

Wium, E., Dulhunty, A.F., and Beard, N.A. (2012). A skeletal muscle ryanodine receptor interaction domain in triadin. PLoS One 7, e43817. crossref(new window)

Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A.H., Craig, A.M., and Sheng, M. (1997). Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385, 439-442. crossref(new window)

Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y.M., and Jones, L.R. (1997). Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J. Biol. Chem. 272, 23389-23397. crossref(new window)