Advanced SearchSearch Tips
Estrogen Receptor α Regulates Dlx3-Mediated Osteoblast Differentiation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 2,  2016, pp.156-162
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2291
 Title & Authors
Estrogen Receptor α Regulates Dlx3-Mediated Osteoblast Differentiation
Lee, Sung Ho; Oh, Kyo-Nyeo; Han, Younho; Choi, You Hee; Lee, Kwang-Youl;
  PDF(new window)
Estrogen receptor (ER-), which is involved in bone metabolism and breast cancer, has been shown to have transcriptional targets. Dlx3 is essential for the skeletal development and plays an important role in osteoblast differentiation. Various osteogenic stimulators and transcription factors can induce the protein expression of Dlx3. However, the regulatory function of ER- in the Dlx3 mediated osteogenic process remains unknown. Therefore, we investigated the regulation of Dlx3 and found that ER- is a positive regulator of Dlx3 transcription in BMP2-induced osteoblast differentiation. We also found that ER- interacts with Dlx3 and increases its transcriptional activity and DNA binding affinity. Furthermore, we demonstrated that the regulation of Dlx3 activity by ER- is independent of the ligand (estradiol) binding domain. These results indicate that Dlx3 is a novel target of ER-, and that ER- regulates the osteoblast differentiation through modulation of Dlx3 expression and/or interaction with Dlx3.
Dlx3;estrogen receptor ;osteoblast differentiation;
 Cited by
Asymmetric DNA methylation between sister chromatids of metaphase chromosomes in mouse embryos upon Bisphenol A action, Reproductive Toxicology, 2017  crossref(new windwow)
Flightless-I governs cell fate by recruiting the SUMO isopeptidase SENP3 to distinct HOX genes, Epigenetics & Chromatin, 2017, 10, 1  crossref(new windwow)
Bjornstrom, L., and Sjoberg, M. (2002). Mutations in the estrogen receptor DNA-binding domain discriminate between the classical mechanism of action and cross-talk with Stat5b and activating protein 1 (AP-1). J. Biol. Chem. 277, 48479-48483. crossref(new window)

Chang, W., Parra, M., Centrella, M., and McCarthy, T.L. (2005). Interactions between CCAAT enhancer binding protein delta and estrogen receptor alpha control insulin-like growth factor I (igf1) and estrogen receptor-dependent gene expression in osteoblasts. Gene 345, 225-235. crossref(new window)

Chen, T.K., Smith, L.M., Gebhardt, D.K., Birrer, M.J., and Brown, P.H. (1996). Activation and inhibition of the AP-1 complex in human breast cancer cells. Mol. Carcinog. 15, 215-226. crossref(new window)

Choi, S.J., Song, I.S., Ryu, O.H., Choi, S.W., Hart, P.S., Wu, W.W., Shen, R.F., and Hart, T.C. (2008). A 4 bp deletion mutation in DLX3 enhances osteoblastic differentiation and bone formation in vitro. Bone 42, 162-171. crossref(new window)

Choi, S.J., Roodman, G.D., Feng, J.Q., Song, I.S., Amin, K., Hart, P.S., Wright, J.T., Haruyama, N., and Hart, T.C. (2009). In vivo impact of a 4 bp deletion mutation in the DLX3 gene on bone development. Dev. Biol. 325, 129-137. crossref(new window)

Choi, Y.H., Choi, H.J., Lee, K.Y., and Oh, J.W. (2012). Akt1 regulates phosphorylation and osteogenic activity of Dlx3. Biochem. Biophys. Res. Commun. 425, 800-805. crossref(new window)

Dao, T.T., Lee, K.Y., Jeong, H.M., Nguyen, P.H., Tran, T.L., Thuong, P.T., Nguyen, B.T., and Oh, W.K. (2011). ent-Kaurane diterpenoids from Croton tonkinensis stimulate osteoblast differentiation. J. Nat. Prod. 74, 2526-2531. crossref(new window)

Depew, M.J., Lufkin, T., and Rubenstein, J.L. (2002). Specification of jaw subdivisions by Dlx genes. Science 298, 381-385. crossref(new window)

Ferriere, F., Habauzit, D., Pakdel, F., Saligaut, C., and Flouriot, G. (2013). Unliganded estrogen receptor alpha promotes PC12 survival during serum starvation. PLoS One 8, e69081. crossref(new window)

Ghoul-Mazgar, S., Hotton, D., Lezot, F., Blin-Wakkach, C., Asselin, A., Sautier, J.M., and Berdal, A. (2005). Expression pattern of Dlx3 during cell differentiation in mineralized tissues. Bone 37, 799-809. crossref(new window)

Gohel, A., McCarthy, M.B., and Gronowicz, G. (1999). Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro. Endocrinology 140, 5339-5347. crossref(new window)

Guemes, M., Garcia, A.J., Rigueur, D., Runke, S., Wang, W., Zhao, G., Mayorga, V.H., Atti, E., Tetradis, S., Peault, B., et al. (2014). GATA4 is essential for bone mineralization via ERalpha and TGFbeta/BMP pathways. J. Bone Miner. Res. 29, 2676-2687. crossref(new window)

Hassan, M.Q., Javed, A., Morasso, M.I., Karlin, J., Montecino, M., van Wijnen, A.J., Stein, G.S., Stein, J.L., and Lian, J.B. (2004). Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol. Cell Biol. 24, 9248-9261. crossref(new window)

Jeong, H.M., Han, E.H., Jin, Y.H., Hwang, Y.P., Kim, H.G., Park, B.H., Kim, J.Y., Chung, Y.C., Lee, K.Y., and Jeong, H.G. (2010). Saponins from the roots of Platycodon grandiflorum stimulate osteoblast differentiation via p38 MAPK- and ERK-dependent RUNX2 activation. Food Chem. Toxicol. 48, 3362-3368. crossref(new window)

Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige, S., Gotoh, Y., Nishida, E., Kawashima, H., et al. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491-1494. crossref(new window)

Kelly, M.J., and Levin, E.R. (2001). Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol. Metab. 12, 152-156. crossref(new window)

Khosla, S. (2013). Pathogenesis of age-related bone loss in humans. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1226-1235. crossref(new window)

Kousteni, S., Bellido, T., Plotkin, L.I., O'Brien, C.A., Bodenner, D.L., Han, L., Han, K., DiGregorio, G.B., Katzenellenbogen, J.A., Katzenellenbogen, B.S., et al. (2001). Nongenotropic, sexnonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719-730.

Kousteni, S., Chen, J.R., Bellido, T., Han, L., Ali, A.A., O'Brien, C.A., Plotkin, L., Fu, Q., Mancino, A.T., Wen, Y., et al. (2002). Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298, 843-846. crossref(new window)

Kousteni, S., Almeida, M., Han, L., Bellido, T., Jilka, R.L., and Manolagas, S.C. (2007). Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor. Mol. Cell Biol. 27, 1516-1530. crossref(new window)

Kumar, V., Green, S., Stack, G., Berry, M., Jin, J.R., and Chambon, P. (1987). Functional domains of the human estrogen receptor. Cell 51, 941-951. crossref(new window)

Lambertini, E., Penolazzi, L., Tavanti, E., Schincaglia, G.P., Zennaro, M., Gambari, R., and Piva, R. (2007). Human estrogen receptor alpha gene is a target of Runx2 transcription factor in osteoblasts. Exp. Cell Res. 313, 1548-1560. crossref(new window)

Lambertini, E., Tavanti, E., Torreggiani, E., Penolazzi, L., Gambari, R., and Piva, R. (2008). ERalpha and AP-1 interact in vivo with a specific sequence of the F promoter of the human ERalpha gene in osteoblasts. J. Cell Physiol. 216, 101-110. crossref(new window)

Lee, S.K., Choi, H.S., Song, M.R., Lee, M.O., and Lee, J.W. (1998). Estrogen receptor, a common interaction partner for a subset of nuclear receptors. Mol. Endocrinol. 12, 1184-1192. crossref(new window)

Lee, S.H., Choi, Y.H., Kim, Y.J., Choi, H.S., Yeo, C.Y., and Lee, K.Y. (2013). Prolyl isomerase Pin1 enhances osteoblast differentiation through Runx2 regulation. FEBS Lett. 587, 3640- 3647. crossref(new window)

Li, H., Jeong, H.M., Choi, Y.H., Kim, J.H., Choi, J.K., Yeo, C.Y., Jeong, H.G., Jeong, T.C., Chun, C., and Lee, K.Y. (2014). Protein kinase a phosphorylates Dlx3 and regulates the function of Dlx3 during osteoblast differentiation. J. Cell. Biochem. 115, 2004-2011.

Matsuda, T., Yamamoto, T., Muraguchi, A., and Saatcioglu, F. (2001). Cross-talk between transforming growth factor-beta and estrogen receptor signaling through Smad3. J. Biol. Chem. 276, 42908-42914. crossref(new window)

McCarthy, T.L., Chang, W.Z., Liu, Y., and Centrella, M. (2003). Runx2 integrates estrogen activity in osteoblasts. J. Biol. Chem. 278, 43121-43129. crossref(new window)

McCarthy, T.L., Kallen, C.B., and Centrella, M. (2011). beta-Catenin independent cross-control between the estradiol and Wnt pathways in osteoblasts. Gene 479, 16-28. crossref(new window)

Moore, R.L., and Faller, D.V. (2013). SIRT1 represses estrogensignaling, ligand-independent ERalpha-mediated transcription, and cell proliferation in estrogen-responsive breast cells. J. Endocrinol. 216, 273-285. crossref(new window)

Panganiban, G., and Rubenstein, J.L. (2002) Developmental functions of the Distal-less/Dlx homeobox genes. Development 129, 4371-4386.

Price, J.S., Sugiyama, T., Galea, G.L., Meakin, L.B., Sunters, A., and Lanyon, L.E. (2011). Role of endocrine and paracrine factors in the adaptation of bone to mechanical loading. Curr. Osteoporos. Rep. 9, 76-82. crossref(new window)

Robinson, G.W., and Mahon, K.A. (1994). Differential and overlapping expression domains of Dlx-2 and Dlx-3 suggest distinct roles for Distal-less homeobox genes in craniofacial development. Mech. Dev. 48, 199-215. crossref(new window)

Robledo, R.F., Rajan, L., Li, X., and Lufkin, T. (2002). The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev. 16, 1089-1101. crossref(new window)

Schuur, E.R., Loktev, A.V., Sharma, M., Sun, Z., Roth, R.A., and Weigel, R.J. (2001). Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family. J. Biol. Chem. 276, 33554-33560. crossref(new window)

Schwabe, J.W., Chapman, L., Finch, J.T., Rhodes, D., and Neuhaus, D. (1993). DNA recognition by the oestrogen receptor: from solution to the crystal. Structure 1, 187-204. crossref(new window)

Smith, E.P., Boyd, J., Frank, G.R., Takahashi, H., Cohen, R.M., Specker, B., Williams, T.C., Lubahn, D.B., and Korach, K.S. (1994). Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056- 1061. crossref(new window)

Takai, H., Matsumura, H., Matsui, S., Kim, K.M., Mezawa, M., Nakayama, Y., and Ogata, Y. (2014). Unliganded estrogen receptor alpha stimulates bone sialoprotein gene expression. Gene 539, 50-57. crossref(new window)

Vico, L., and Vanacker, J.M. (2010). Sex hormones and their receptors in bone homeostasis: insights from genetically modified mouse models. Osteoporos Int. 21, 365-372. crossref(new window)

Weigel, N.L. (1996). Steroid hormone receptors and their regulation by phosphorylation. Biochem. J. 319 (Pt 3), 657-667. crossref(new window)

Windahl, S.H., Saxon, L., Borjesson, A.E., Lagerquist, M.K., Frenkel, B., Henning, P., Lerner, U.H., Galea, G.L., Meakin, L.B., Engdahl, C., et al. (2013). Estrogen receptor-alpha is required for the osteogenic response to mechanical loading in a ligandindependent manner involving its activation function 1 but not 2. J. Bone Miner Res. 28, 291-301. crossref(new window)

Wurtz, J.M., Bourguet, W., Renaud, J.P., Vivat, V., Chambon, P., Moras, D., and Gronemeyer, H. (1996). A canonical structure for the ligand-binding domain of nuclear receptors. Nat. Struct. Biol. 3, 87-94. crossref(new window)

Wurtz, J.M., Egner, U., Heinrich, N., Moras, D., and Mueller- Fahrnow, A. (1998). Three-dimensional models of estrogen receptor ligand binding domain complexes, based on related crystal structures and mutational and structure-activity relationship data. J. Med. Chem. 41, 1803-1814. crossref(new window)

Yamamoto, T., Saatcioglu, F., and Matsuda, T. (2002). Cross-talk between bone morphogenic proteins and estrogen receptor signaling. Endocrinology 143, 2635-2642. crossref(new window)

Zhou, S., Zilberman, Y., Wassermann, K., Bain, S.D., Sadovsky, Y., and Gazit, D. (2001). Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J. Cell Biochem. Suppl. 36, 144-155.