Advanced SearchSearch Tips
An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 2,  2016, pp.77-86
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2350
 Title & Authors
An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts
Cho, Sung-Yup; Kang, Wonyoung; Han, Jee Yun; Min, Seoyeon; Kang, Jinjoo; Lee, Ahra; Kwon, Jee Young; Lee, Charles; Park, Hansoo;
  PDF(new window)
Cancer is a heterogeneous disease caused by diverse genomic alterations in oncogenes and tumor suppressor genes. Despite recent advances in high-throughput sequencing technologies and development of targeted therapies, novel cancer drug development is limited due to the high attrition rate from clinical studies. Patient-derived xenografts (PDX), which are established by the transfer of patient tumors into immunodeficient mice, serve as a platform for co-clinical trials by enabling the integration of clinical data, genomic profiles, and drug responsiveness data to determine precisely targeted therapies. PDX models retain many of the key characteristics of patients` tumors including histology, genomic signature, cellular heterogeneity, and drug responsiveness. These models can also be applied to the development of biomarkers for drug responsiveness and personalized drug selection. This review summarizes our current knowledge of this field, including methodologic aspects, applications in drug development, challenges and limitations, and utilization for precision cancer medicine.
cancer drug development;cancer genomics;patient-derived xenografts;precision medicine;
 Cited by
Preclinical disease and preventive strategies in IBD: perspectives, challenges and opportunities, Gut, 2016, 65, 7, 1061  crossref(new windwow)
Humanized mouse models: Application to human diseases, Journal of Cellular Physiology, 2017  crossref(new windwow)
Pancreatic cancer models for translational research, Pharmacology & Therapeutics, 2017, 173, 146  crossref(new windwow)
Patient-derived xenografts as in vivo models for research in urological malignancies, Nature Reviews Urology, 2017, 14, 5, 267  crossref(new windwow)
The promise of Janus kinase inhibitors in the treatment of hematological malignancies, Cytokine, 2017, 98, 33  crossref(new windwow)
A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug, Scientific Reports, 2017, 7, 1  crossref(new windwow)
A Small Molecule Inhibitor of the β-Catenin-TCF4 Interaction Suppresses Colorectal Cancer Growth In Vitro and In Vivo, EBioMedicine, 2017  crossref(new windwow)
Suppressor of cytokine signaling-1 gene therapy induces potent antitumor effect in patient-derived esophageal squamous cell carcinoma xenograft mice, International Journal of Cancer, 2017, 140, 11, 2608  crossref(new windwow)
Cancer Immunotherapy: Historical Perspective of a Clinical Revolution and Emerging Preclinical Animal Models, Frontiers in Immunology, 2017, 8  crossref(new windwow)
Agliano, A., Martin-Padura, I., Mancuso, P., Marighetti, P., Rabascio, C., Pruneri, G., Shultz, L.D., and Bertolini, F. (2008). Human acute leukemia cells injected in NOD/LtSz-scid/IL-$2R\gamma$ null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int. J. Cancer 123, 2222-2227. crossref(new window)

Aparicio, S., Hidalgo, M., and Kung, A.L. (2015). Examining the utility of patient-derived xenograft mouse models. Nat. Rev. Cancer 15, 311-316. crossref(new window)

Aytes, A., Mollevi, D.G., Martinez-Iniesta, M., Nadal, M., Vidal, A., Morales, A., Salazar, R., Capella, G., and Villanueva, A. (2012). Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and confers a tumor cell growth suppressor phenotype. Mol. Carcinog. 51, 746-753. crossref(new window)

Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D.W., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., et al. (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615. crossref(new window)

Bertolini, G., Roz, L., Perego, P., Tortoreto, M., Fontanella, E., Gatti, L., Pratesi, G., Fabbri, A., Andriani, F., Tinelli, S., et al. (2009). Highly tumorigenic lung cancer CD133(+) cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. USA 106, 16281-16286. crossref(new window)

Bertotti, A., Migliardi, G., Galimi, F., Sassi, F., Torti, D., Isella, C., Cora, D., Di Nicolantonio, F., Buscarino, M., Petti, C., et al. (2011). A molecularly annotated platform of patient-derived xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508-523. crossref(new window)

Chen, K., Ahmed, S., Adeyi, O., Dick, J.E., and Ghanekar, A. (2012). Human solid tumor xenografts in immunodeficient mice are vulnerable to lymphomagenesis associated with Epstein-Barr virus. PLoS One 7, e39294. crossref(new window)

Choi, S.Y.C., Lin, D., Gout, P.W., Collins, C.C., Xu, Y., and Wang, Y.Z. (2014). Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv. Drug Deliver. Rev. 79-80, 222-237. crossref(new window)

Das Thakur, M., Salangsang, F., Landman, A.S., Sellers, W.R., Pryer, N.K., Levesque, M.P., Dummer, R., McMahon, M., and Stuart, D.D. (2013). Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251-255. crossref(new window)

de Groot, J.F., Fuller, G., Kumar, A.J., Piao, Y., Eterovic, K., Ji, Y.J., and Conrad, C.A. (2010). Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro. Oncol. 12, 233-242. crossref(new window)

Delitto, D., Pham, K., Vlada, A.C., Sarosi, G.A., Thomas, R.M., Behrns, K.E., Liu, C., Hughes, S.J., Wallet, S.M., and Trevino, J.G. (2015). Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate retention of tumor morphology through incorporation of murine stromal elements. Am. J. Pathol. 185, 1297-1303. crossref(new window)

DeRose, Y.S., Wang, G.Y., Lin, Y.C., Bernard, P.S., Buys, S.S., Ebbert, M.T.W., Factor, R., Matsen, C., Milash, B.A., Nelson, E., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514-1520 crossref(new window)

DiMasi, J.A., Reichert, J.M., Feldman, L., and Malins, A. (2013). Clinical approval success rates for investigational cancer drugs. Clin. Pharmacol. Ther. 94, 329-335. crossref(new window)

Ding, L., Ellis, M.J., Li, S.Q., Larson, D.E., Chen, K., Wallis, J., Harris, C.C., McLellan, M.D., Fulton, R.S., Fulton, L.L., et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999-1005. crossref(new window)

Dong, X., Guan, J., English, J.C., Flint, J., Yee, J., Evans, K., Murray, N., Macaulay, C., Ng, R.T., Gout, P.W., et al. (2010). Patientderived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin. Cancer Res. 16, 1442-1451. crossref(new window)

Dowst, H., Pew, B., Watkins, C., McOwiti, A., Barney, J., Qu, S., Becnel, L. B. (2015). Acquire: an open-source comprehensive cancer biobanking system. Bioinformatics 31, 1655-1662. crossref(new window)

Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., Gelmon, K., Chia, S., Mar, C., Wan, A., et al. (2015). Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422-426. crossref(new window)

Fernandez de Sanmamamed, M., Lopez Rodriguez, I., Schalper, K.A., Onate, C., Azpilikueta, A., Rodriguez-Ruiz, M.E., Morales- Kastresana, A., Labiano, S., Perez-Gracia, J.L., Martin-Algarra, S., et al. (2015). Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2-/-IL2R$\gamma$null immunodeficient mice. Cancer Res. 75, 3466-3478. crossref(new window)

Fichtner, I., Rolff, J., Soong, R., Hoffmann, J., Hammer, S., Sommer, A., Becker, M., and Merk, J. (2008). Establishment of patientderived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin. Cancer Res. 14, 6456-6468. crossref(new window)

Gao, D., and Chen, Y. (2015). Organoid development in cancer genome discovery. Curr. Opin. Genet. Dev. 30, 42-48. crossref(new window)

Gao, H., Korn, J.M., Ferretti, S., Monahan, J.E., Wang, Y., Singh, M., Zhang, C., Schnell, C., Yang, G., Zhang, Y., et al. (2015). Highthroughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318-1325. crossref(new window)

Garraway, L.A., Verweij, J., and Ballman, K.V. (2013). Precision oncology: an overview. J. Clin. Oncol. 31, 1803-1805. crossref(new window)

Garrido-Laguna, I., Uson, M., Rajeshkumar, N.V., Tan, A.C., de Oliveira, E., Karikari, C., Villaroel, M.C., Salomon, A., Taylor, G., Sharma, R., et al. (2011). Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin. Cancer Res. 17, 5793-5800. crossref(new window)

Girotti, M.R., Lopes, F., Preece, N., Niculescu-Duvaz, D., Zambon, A., Davies, L., Whittaker, S., Saturno, G., Viros, A., Pedersen, M., et al. (2015). Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell 27, 85-96. crossref(new window)

Hidalgo, M., Bruckheimer, E., Rajeshkumar, N.V., Garrido-Laguna, I., De Oliveira, E., Rubio-Viqueira, B., Strawn, S., Wick, M.J., Martell, J., and Sidransky, D. (2011). A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10, 1311-1316. crossref(new window)

Hidalgo, M., Amant, F., Biankin, A.V., Budinska, E., Byrne, A.T., Caldas, C., Clarke, R.B., de Jong, S., Jonkers, J., Maelandsmo, G.M., et al. (2014). Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998-1013. crossref(new window)

Hoffman, R.M. (2015). Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 15, 451-452. crossref(new window)

John, T., Yanagawa, N., Kohler, D., Craddock, K.J., Bandarchi- Chamkhaleh, B., Pintilie, M., Sykes, J., To, C., Li, M., Panchal, D., et al. (2012). Characterization of lymphomas developing in immunodeficient mice implanted with primary human non-small cell lung cancer. J. Thorac. Oncol. 7, 1101-1108. crossref(new window)

Johnson, J.I., Decker, S., Zaharevitz, D., Rubinstein, L.V., Venditti, J., Schepartz, S., Kalyandrug, S., Christian, M., Arbuck, S., Hollingshead, M., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424-1431. crossref(new window)

Joo, K.M., Kim, J., Jin, J., Kim, M., Seol, H.J., Muradov, J., Yang, H., Choi, Y.L., Park, W.Y., Kong, D.S., et al. (2013). Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. Cell Rep. 3, 260-273. crossref(new window)

Julien, S., Merino-Trigo, A., Lacroix, L., Pocard, M., Goere, D., Mariani, P., Landron, S., Bigot, L., Nemati, F., Dartigues, P., et al. (2012). Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin. Cancer Res. 18, 5314-5328. crossref(new window)

Kimple, R.J., Harari, P.M., Torres, A.D., Yang, R.Z., Soriano, B.J., Yu, M., Armstrong, E.A., Blitzer, G.C., Smith, M.A., Lorenz, L.D., et al. (2013). Development and characterization of HPV-positive and HPV-negative head and neck squamous cell carcinoma tumorgrafts. Clin. Cancer Res. 19, 855-864. crossref(new window)

Keysar, S.B., Astling, D.P., Anderson, R.T., Vogler, B.W., Bowles, D.W., Morton, J.J., Paylor, J.J., Glogowska, M.J., Le, P.N., Eagles- Soukup, J.R., et al. (2013). A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol. Oncol. 7, 776- 790. crossref(new window)

Koboldt, D.C., Fulton, R.S., McLellan, M.D., Schmidt, H., Kalicki- Veizer, J., McMichael, J.F., Fulton, L.L., Dooling, D.J., Ding, L., Mardis, E.R., et al. (2012). Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70. crossref(new window)

Kopetz, S., Lemos, R., and Powis, G. (2012). The promise of patient- derived xenografts: the best laid plans of mice and men. Clin. Cancer Res. 18, 5160-5162. crossref(new window)

Kung, A.L. (2007). Practices and pitfalls of mouse cancer models in drug discovery. Adv. Cancer Res. 96, 191-212.

Lai, A., Tran, A., Nghiemphu, P.L., Pope, W.B., Solis, O.E., Selch, M., Filka, E., Yong, W.H., Mischel, P.S., Liau, L.M., et al. (2011). Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J. Clin. Oncol. 29, 142-148. crossref(new window)

Landis, M.D., Lehmann, B.D., Pietenpol, J.A., and Chang, J.C. (2013). Patient-derived breast tumor xenografts facilitating personalized cancer therapy. Breast Cancer Res. 15, 201. crossref(new window)

Li, S.Q., Shen, D., Shao, J.Y., Crowder, R., Liu, W.B., Prat, A., He, X.P., Liu, S.Y., Hoog, J., Lu, C., et al. (2013). Endocrine-therapyresistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 4, 1116-1130. crossref(new window)

Lin, D., Wyatt, A. W., Xue, H., Wang, Y., Dong, X., Haegert, A., Wu, R., Brahmbhatt, S., Mo, F., Jong, L., et al. (2014). High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1271-1283. crossref(new window)

Macconaill, L.E., and Garraway, L.A. (2010). Clinical implications of the cancer genome. J. Clin. Oncol. 28, 5219-5228. crossref(new window)

Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., de Plater, L., Guyader, C., De Pinieux, G., Judde, J.G., et al. (2007). A new model of patient tumorderived breast cancer xenografts for preclinical assays. Clin. Cancer Res. 13, 3989-3998. crossref(new window)

Masso-Valles, D., Jauset, T., Serrano, E., Sodir, N.M., Pedersen, K., Affara, N.I., Whitfield, J.R., Beaulieu, M.E., Evan, G.I., Elias, L., et al. (2015). Ibrutinib exerts potent antifibrotic and antitumor activities in mouse models of pancreatic adenocarcinoma. Cancer Res. 75, 1675-1681. crossref(new window)

Mattie, M., Christensen, A., Chang, M.S., Yeh, W., Said, S., Shostak, Y., Capo, L., Verlinsky, A., An, Z.L., Joseph, I., et al. (2013). Molecular characterization of patient-derived human pancreatic tumor xenograft models for preclinical and translational development of cancer therapeutics. Neoplasia 15, 1124-1136.

Morton, C.L., and Houghton, P.J. (2007). Establishment of human tumor xenografts in immunodeficient mice. Nat. Protoc. 2, 247- 250. crossref(new window)

Morton, J.J., Bird, G., Keysar, S.B., Astling, D.P., Lyons, T.R., Anderson, R.T., Glogowska, M.J., Estes, P., Eagles, J.R., Le, P.N., et al. (2015). XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene (Epub ahead of print).

Muzny, D.M., Bainbridge, M.N., Chang, K., Dinh, H.H., Drummond, J.A., Fowler, G., Kovar, C.L., Lewis, L.R., Morgan, M.B., Newsham, I.F., et al. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337. crossref(new window)

Nardella, C., Lunardi, A., Patnaik, A., Cantley, L.C., and Pandolfi, P.P. (2011). The APL paradigm and the "co-clinical trial" project. Cancer Discov. 1, 108-116. crossref(new window)

Nemati, F., Sastre-Garau, X., Laurent, C., Couturier, J., Mariani, P., Desjardins, L., Piperno-Neumann, S., Lantz, O., Asselain, B., Plancher, C., et al. (2010). Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clin. Cancer Res. 16, 2352- 2362. crossref(new window)

Ostman, A. (2012). The tumor microenvironment controls drug sensitivity. Nat. Med. 18, 1332-1334. crossref(new window)

Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., et al. (2004). EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA 101, 13306- 13311. crossref(new window)

Park, H., Cho, S.Y., Kim, H., Na, D., Han, J.Y., Chae, J., Park, C., Park, O.K., Min, S, Kang, J., et al. (2015). Genomic alterations in BCL2L1 and DLC1 contribute to drug sensitivity in gastric cancer. Proc. Natl. Acad. Sci. USA 112, 12492-12497. crossref(new window)

Quintas-Cardama, A., and Cortes, J. (2009). Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113, 1619- 1630. crossref(new window)

Reyal, F., Guyader, C., Decraene, C., Lucchesi, C., Auger, N., Assayag, F., De Plater, L., Gentien, D., Poupon, M.F., Cottu, P., et al. (2012). Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 14, R11. crossref(new window)

Reyes, G., Villanueva, A., Garcia, C., Sancho, F.J., Piulats, J., Lluis, F., and Capella, G. (1996). Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice. Cancer Res. 56, 5713-5719.

Rongvaux, A., Willinger, T., Martinek, J., Strowig, T., Gearty, S.V., Teichmann, L.L., Saito, Y., Marches, F., Halene, S., Palucka, A.K., et al. (2014). Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364-U230. crossref(new window)

Rosen, J.M., and Jordan, C.T. (2009). The increasing complexity of the cancer stem cell paradigm. Science 324, 1670-1673. crossref(new window)

Rosfjord, E., Lucas, J., Li, G., and Gerber, H.P. (2014). Advances in patient-derived tumor xenografts: From target identification to predicting clinical response rates in oncology. Biochem. Pharmacol. 91, 135-143. crossref(new window)

Schatton, T., Murphy, G.F., Frank, N.Y., Yamaura, K., Waaga- Gasser, A.M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L.M., Weishaupt, C., et al. (2008). Identification of cells initiating human melanomas. Nature 451, 345-349. crossref(new window)

Scott, C.L., Becker, M.A., Haluska, P., and Samimi, G. (2013). Patient- derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment. Front. Oncol. 3, 295.

Shaw, A.T., Yeap, B.Y., Solomon, B.J., Riely, G.J., Gainor, J., Engelman, J.A., Shapiro, G.I., Costa, D.B., Ou, S.H.I., Butaney, M., et al. (2011). Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12, 1004-1012. crossref(new window)

Siolas, D., and Hannon, G.J. (2013). Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 73, 5315-5319. crossref(new window)

Slamon, D., Eiermann, W., Robert, N., Pienkowski, T., Martin, M., Press, M., Mackey, J., Glaspy, J., Chan, A., Pawlicki, M., et al. (2011). Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 365, 1273-1283. crossref(new window)

Tentler, J.J., Tan, A.C., Weekes, C.D., Jimeno, A., Leong, S., Pitts, T.M., Arcaroli, J.J., Messersmith, W.A., and Eckhardt, S.G. (2012). Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338-350. crossref(new window)

Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P., et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110. crossref(new window)

Von Hoff, D.D., Ramanathan, R.K., Borad, M.J., Laheru, D.A., Smith, L.S., Wood, T.E., Korn, R.L., Desai, N., Trieu, V., Iglesias, J.L., et al. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol. 29, 4548-4554. crossref(new window)

Von Hoff, D.D., Ervin, T., Arena, F.P., Chiorean, E.G., Infante, J., Moore, M., Seay, T., Tjulandin, S.A., Ma, W.W., Saleh, M.N., et al. (2013). Increased survival in pancreatic cancer with nabpaclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691-1703. crossref(new window)

Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013). The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113-1120. crossref(new window)

Wetterauer, C., Vlajnic, T., Schuler, J., Gsponer, J.R., Thalmann, G.N., Cecchini, M., Schneider, J., Zellweger, T., Pueschel, H., Bachmann, A., et al. (2015). Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate 75, 585-592. crossref(new window)

Whittle, J.R., Lewis, M.T., Lindeman, G.J., and Visvader, J.E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 17, 17. crossref(new window)

Williams, S.A., Anderson, W.C., Santaguida, M.T., and Dylla, S.J. (2013). Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab. Invest. 93, 970-982. crossref(new window)

Zhang, X.M., Claerhout, S., Prat, A., Dobrolecki, L.E., Petrovic, I., Lai, Q., Landis, M.D., Wiechmann, L., Schiff, R., Giuliano, M., et al. (2013). A Renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 73, 4885-4897. crossref(new window)

Zhang, L.H., Liu, Y.Q., Wang, X.H., Tang, Z.Y., Li, S.X., Hu, Y., Zong, X.L., Wu, X.J., Bu, Z.D., Wu, A.W., et al. (2015). The extent of in flammatory infiltration in primary cancer tissues is associated with lymphomagenesis in immunodeficient mice. Sci. Rep. 5, 9447. crossref(new window)

Zhao, X.M., Liu, Z.G., Yu, L.T., Zhang, Y.J., Baxter, P., Voicu, H., Gurusiddappa, S., Luan, J., Su, J.M., Leung, H.C.E., et al. (2012). Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro. Oncol. 14, 574-583. crossref(new window)