Advanced SearchSearch Tips
Sirt1 and the Mitochondria
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 2,  2016, pp.87-95
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2318
 Title & Authors
Sirt1 and the Mitochondria
Tang, Bor Luen;
  PDF(new window)
Sirt1 is the most prominent and extensively studied member of sirtuins, the family of mammalian class III histone deacetylases heavily implicated in health span and longevity. Although primarily a nuclear protein, Sirt1`s deacetylation of Peroxisome proliferator-activated receptor Gamma Coactivator- (PGC-) has been extensively implicated in metabolic control and mitochondrial biogenesis, which was proposed to partially underlie Sirt1`s role in caloric restriction and impacts on longevity. The notion of Sirt1`s regulation of PGC- activity and its role in mitochondrial biogenesis has, however, been controversial. Interestingly, Sirt1 also appears to be important for the turnover of defective mitochondria by mitophagy. I discuss here evidences for Sirt1`s regulation of mitochondrial biogenesis and turnover, in relation to PGC- deacetylation and various aspects of cellular physiology and disease.
mitochondria;mitochondrial biogenesis;mitophagy;PGC-;Sirt1;
 Cited by
Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols, Neuroscience & Biobehavioral Reviews, 2017, 73, 39  crossref(new windwow)
Depigmenting Effect of Resveratrol Is Dependent on FOXO3a Activation without SIRT1 Activation, International Journal of Molecular Sciences, 2017, 18, 6, 1213  crossref(new windwow)
Impaired AMPK Activity Drives Age-Associated Acute Lung Injury after Hemorrhage, American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 5, 553  crossref(new windwow)
Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells via AMPK and p38-MAPK signaling, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2017, 1862, 10, 1110  crossref(new windwow)
Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity, International Journal of Molecular Sciences, 2017, 18, 8, 1821  crossref(new windwow)
Melatonin, clock genes and mitochondria in sepsis, Cellular and Molecular Life Sciences, 2017  crossref(new windwow)
PINK1 signaling in mitochondrial homeostasis and in aging (Review), International Journal of Molecular Medicine, 2017, 39, 1, 3  crossref(new windwow)
Sirtuins as modifiers of Parkinson's disease pathology, Journal of Neuroscience Research, 2017, 95, 4, 930  crossref(new windwow)
Mitochondria as pharmacological targets in Down syndrome, Free Radical Biology and Medicine, 2017  crossref(new windwow)
The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system, Cell Death and Disease, 2017, 8, 9, e3044  crossref(new windwow)
Could Sirtuin Activities Modify ALS Onset and Progression?, Cellular and Molecular Neurobiology, 2017, 37, 7, 1147  crossref(new windwow)
Treadmill Exercise Attenuates α-Synuclein Levels by Promoting Mitochondrial Function and Autophagy Possibly via SIRT1 in the Chronic MPTP/P-Induced Mouse Model of Parkinson’s Disease, Neurotoxicity Research, 2017, 32, 3, 473  crossref(new windwow)
VDAC1 deacetylation is involved in the protective effects of resveratrol against mitochondria-mediated apoptosis in cardiomyocytes subjected to anoxia/reoxygenation injury, Biomedicine & Pharmacotherapy, 2017, 95, 77  crossref(new windwow)
Loss of BRG1 induces CRC cell senescence by regulating p53/p21 pathway, Cell Death and Disease, 2017, 8, 2, e2607  crossref(new windwow)
Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells, Journal of Cellular Physiology, 2017  crossref(new windwow)
Linking mitochondrial dysfunction to neurodegeneration in lysosomal storage diseases, Journal of Inherited Metabolic Disease, 2017, 40, 5, 631  crossref(new windwow)
Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders, Neurochemical Research, 2017, 42, 3, 876  crossref(new windwow)
Albani, D., Polito, L., Batelli, S., De Mauro, S., Fracasso, C., Martelli, G., Colombo, L., Manzoni, C., Salmona, M., Caccia, S., et al. (2009). The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alphasynuclein or amyloid-beta (1-42) peptide. J. Neurochem. 110, 1445-1456. crossref(new window)

Amat, R., Planavila, A., Chen, S.L., Iglesias, R., Giralt, M., and Villarroya, F. (2009). SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma Co-activator- 1alpha (PGC-1alpha) gene in skeletal muscle through the PGC- 1alpha autoregulatory loop and interaction with MyoD. J. Biol. Chem. 284, 21872-21880. crossref(new window)

Anderson, R.M., Barger, J.L., Edwards, M.G., Braun, K.H., O'Connor, C.E., Prolla, T.A., and Weindruch, R. (2008). Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell. 7, 101-111. crossref(new window)

Aquilano, K., Vigilanza, P., Baldelli, S., Pagliei, B., Rotilio, G., and Ciriolo, M.R. (2010). Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J. Biol. Chem. 285, 21590-21599. crossref(new window)

Aquilano, K., Baldelli, S., Pagliei, B., and Ciriolo, M.R. (2012). Extranuclear localization of SIRT1 and PGC-$1{\alpha}$: an insight into possible roles in diseases associated with mitochondrial dysfunction. Curr. Mol. Med. 13, 140-154. crossref(new window)

Austin, S., and St-Pierre, J. (2012). $PGC1{\alpha}$ and mitochondrial metabolism-- emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci. 125, 4963-4971. crossref(new window)

Bai, P., Canto, C., Oudart, H., Brunyanszki, A., Cen, Y., Thomas, C., Yamamoto, H., Huber, A., Kiss, B., Houtkooper, R.H., et al. (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461-468. crossref(new window)

Barger, P.M., Browning, A.C., Garner, A.N., and Kelly, D.P. (2001). p38 mitogen-activated protein kinase activates peroxisome proliferator- activated receptor alpha: a potential role in the cardiac metabolic stress response. J Biol. Chem. 276, 44495-44501. crossref(new window)

Bogenhagen, D.F. (2012). Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta. 1819, 914-920. crossref(new window)

Brachmann, C.B., Sherman, J.M., Devine, S.E., Cameron, E.E., Pillus, L., and Boeke, J.D. (1995). The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9, 2888- 2902. crossref(new window)

Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., Hu, L.S., Cheng, H.L., Jedrychowski, M.P., Gygi, S.P., Sinclair, D.A., Alt, F.W., and Greenberg, M.E. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015. crossref(new window)

Burnett, C. Valentini, S., Cabreiro, F., Goss, M., Somogyvari, M., Piper, M.D., Hoddinott, M., Sutphin, G.L., Leko, V., McElwee, J.J., et al. (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482-485. crossref(new window)

Byles, V., Chmilewski, L.K., Wang, J., Zhu, L., Forman, L.W., Faller, D.V., and Dai, Y. (2010). Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells. Int. J. Biol. Sci. 6, 599-612.

Campbell, C.T., Kolesar, J.E., and Kaufman, B.A. (2012). Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta 1819, 921-929. crossref(new window)

Canto, C., and Auwerx, J. (2009). Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 20, 325-331. crossref(new window)

Canto, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P., and Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060. crossref(new window)

Canto, C., Jiang, L.Q., Deshmukh, A.S., Mataki, C., Coste, A., Lagouge, M., Zierath, J.R., and Auwerx, J. (2010). Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213-219. crossref(new window)

Cheng, H.L., Mostoslavsky, R., Saito, S., Manis, J.P., Gu, Y., Patel, P., Bronson, R., Appella, E., Alt, F.W., and Chua, K.F. (2003). Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA 100, 10794-10799. crossref(new window)

Civitarese, A.E., Carling, S., Heilbronn, L.K., Hulver, M.H., Ukropcova, B., Deutsch, W.A., Smith, S.R., Ravussin, E., and CALERIE Pennington Team (2007). Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 4, e76. crossref(new window)

Cui, L., Jeong, H., Borovecki, F., Parkhurst, C.N., Tanese, N., and Krainc, D. (2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127, 59-69. crossref(new window)

Dasgupta, B., and Milbrandt, J. (2007). Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA 104, 7217- 7222. crossref(new window)

Dinkova-Kostova, A.T., Baird, L., Holmstrom, K.M., Meyer, C.J., and Abramov, A.Y. (2015). The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics. Biochem. Soc. Trans. 43, 602-610. crossref(new window)

Dominy, J.E., Lee, Y., Gerhart-Hines, Z., and Puigserver, P. (2010). Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim. Biophys. Acta 1804, 1676-1683. crossref(new window)

Donmez, G., Arun, A., Chung, C.Y., McLean, P.J., Lindquist, S., and Guarente, L. (2012). SIRT1 protects against ${\alpha}$-synuclein aggregation by activating molecular chaperones. J. Neurosci. 32, 124- 132. crossref(new window)

Dumont, M., Stack, C., Elipenahli, C., Jainuddin, S., Launay, N., Gerges, M., Starkova, N., Starkov, A.A., Calingasan, N.Y., Tampellini, D., Pujol, A., and Beal, M.F. (2014). PGC-$1{\alpha}$ overexpression exacerbates ${\beta}$-amyloid and tau deposition in a transgenic mouse model of Alzheimer's disease. FASEB J. 28, 1745-1755. crossref(new window)

Ebrahim, A.S., Ko, L.W., and Yen, S.H. (2010). Reduced expression of peroxisome-proliferator activated receptor gamma coactivator- 1alpha enhances alpha-synuclein oligomerization and down regulates AKT/GSK3beta signaling pathway in human neuronal cells that inducibly express alpha-synuclein. Neurosci. Lett. 473, 120-125. crossref(new window)

Eiyama, A., and Okamoto, K. (2015). PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol. 33, 95-101. crossref(new window)

Fang, E.F., Scheibye-Knudsen, M., Brace, L.E., Kassahun, H., SenGupta, T., Nilsen, H., Mitchell, J.R., Croteau, D.L., and Bohr, V.A. (2014). Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157, 882-896. crossref(new window)

Feige, J.N., Lagouge, M., Canto, C., Strehle, A., Houten, S.M., Milne, J.C., Lambert, P.D., Mataki, C., Elliott, P.J., and Auwerx, J. (2008). Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347-358. crossref(new window)

Ferber, E.C., Peck, B., Delpuech, O., Bell, G.P., East, P., and Schulze, A. (2012). FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 19, 968-979. crossref(new window)

Garcia-Roves, P.M., Osler, M.E., Holmstrom, M.H., and Zierath, J.R. (2008). Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J. Biol. Chem. 283, 35724-35734. crossref(new window)

Gerhart-Hines, Z., Rodgers, J.T., Bare, O., Lerin, C., Kim, S.H., Mostoslavsky, R., Alt, F.W., Wu, Z., and Puigserver, P. (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 26, 1913-1923. crossref(new window)

Ghosh, H.S., McBurney, M., and Robbins, P.D. (2010). SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5, e9199. crossref(new window)

Gomes, A.P., Price, N.L., Ling, A.J.Y., Moslehi, J.J., Montgomery, M.K., Rajman, L., White, J.P., Teodoro, J.S., Wrann, C.D., Hubbard, B.P., et al. (2013). Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624-1638. crossref(new window)

Gregoretti, I.V., Lee, Y.M., and Goodson, H.V. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17-31. crossref(new window)

Guarente, L. (2011). Sirtuins, aging, and metabolism. Cold Spring Harb. Symp. Quant. Biol. 76, 81-90. crossref(new window)

Gurd, B.J. (2011). Deacetylation of PGC-$1{\alpha}$ by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl. Physiol. Nutr. Metab. 36, 589-597. crossref(new window)

Gurd, B.J., Yoshida, Y., Lally, J., Holloway, G.P., and Bonen, A. (2009). The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J. Physiol. 587, 1817-1828. crossref(new window)

Gurd, B.J., Yoshida, Y., McFarlan, J.T., Holloway, G.P., Moyes, C.D., Heigenhauser, G.J.F., Spriet, L., and Bonen, A. (2011). Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R67-R75. crossref(new window)

Haigis, M.C., and Guarente, L.P. (2006). Mammalian sirtuins-- emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20, 2913-2921. crossref(new window)

Haigis, M.C., and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253- 295. crossref(new window)

Hallows, W.C., Lee, S., and Denu, J.M. (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA 103, 10230-10235. crossref(new window)

Han, M.K., Song, E.K., Guo, Y., Ou, X., Mantel, C., and Broxmeyer, H.E. (2008). SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2, 241-251. crossref(new window)

Hancock, C.R., Han, D.H., Higashida, K., Kim, S.H., and Holloszy, J.O. (2011). Does calorie restriction induce mitochondrial biogenesis? A reevaluation. FASEB J. 25, 785-791. crossref(new window)

Hardie, D.G. (2011). Sensing of energy and nutrients by AMPactivated protein kinase. Am J. Clin. Nutr. 93, 891S-8916. crossref(new window)

Hathorn, T., Snyder-Keller, A., and Messer, A. (2011). Nicotinamide improves motor deficits and upregulates PGC-$1{\alpha}$ and BDNF gene expression in a mouse model of Huntington's disease. Neurobiol. Dis. 41, 43-50. crossref(new window)

Herranz, D., Munoz-Martin, M., Canamero, M., Mulero, F., Martinez- Pastor, B., Fernandez-Capetillo, O., and Serrano, M. (2010). Sirt1 improves healthy ageing and protects from metabolic syndrome- associated cancer. Nat. Commun. 1, 3.

Higashida, K., Kim, S.H., Jung, S.R., Asaka, M., Holloszy, J.O., and Han, D.H. (2013). Effects of resveratrol and SIRT1 on PGC-$1{\alpha}$ activity and mitochondrial biogenesis: A reevaluation. PLoS Biol. 11, e1001603. crossref(new window)

Hong, S., Zhao, B., Lombard, D.B., Fingar, D.C., and Inoki, K. (2014). Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J. Biol. Chem. 289, 13132- 13141. crossref(new window)

Hou, X., Xu, S., Maitland-Toolan, K.A., Sato, K., Jiang, B., Ido, Y., Lan, F., Walsh, K., Wierzbicki, M., Verbeuren, T.J., et al. (2008). SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 283, 20015-20026. crossref(new window)

Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196. crossref(new window)

Hubbard, B.P., Gomes, A.P., Dai, H., Li, J., Case, A.W., Considine, T., Riera, T.V., Lee, J.E., E, S.Y., Lamming, D.W., et al. (2013). Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216-1219. crossref(new window)

Jackson, M.D., and Denu, J.M. (2002). Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases. J. Biol. Chem. 277, 18535-18544. crossref(new window)

Jacobs, K.M., Pennington, J.D., Bisht, K.S., Aykin-Burns, N., Kim, H.S., Mishra, M., Sun, L., Nguyen, P., Ahn, B.H., Leclerc, J., et al. (2008). SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int. J. Biol. Sci. 4, 291-299.

Jager, S., Handschin, C., St-Pierre, J., and Spiegelman, B.M. (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA 104, 12017-12022. crossref(new window)

Jang, S.Y., Kang, H.T., and Hwang, E.S. (2012). Nicotinamideinduced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304-19314. crossref(new window)

Jin, Q., Yan, T., Ge, X., Sun, C., Shi, X., and Zhai, Q. (2007). Cytoplasm- localized SIRT1 enhances apoptosis. J. Cell. Physiol. 213, 88-97. crossref(new window)

Kaeberlein, M., McDonagh, T., Heltweg, B., Hixon, J., Westman, E.A., Caldwell, S.D., Napper, A., Curtis, R., DiStefano, P.S., Fields, S., et al. (2005). Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038-17045. crossref(new window)

Kang, H.T., and Hwang, E.S. (2009). Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426-438. crossref(new window)

Kawai, Y., Garduno, L., Theodore, M., Yang, J., and Arinze, I.J. (2011). Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J. Biol. Chem. 286, 7629-7640. crossref(new window)

Kim, H., Yang, J., Kim, M.J., Choi, S., Chung, J.R., Kim, J.M., Yoo, Y.H., Chung, J., and Koh, H. (2015). Tumor necrosis factor receptor- associated protein 1 (TRAP1) mutation and TRAP1 inhibitor gamitrinib-triphenylphosphonium (G-TPP) induce a forkhead box O (FOXO)-dependent cell protective signal from mitochondria. J. Biol. Chem. (in press).

Koh, H., Kim, H., Kim, M.J., Park, J., Lee, H.J., and Chung, J. (2012). Silent information regulator 2 (Sir2) and Forkhead box O (FOXO) complement mitochondrial dysfunction and dopaminergic neuron loss in Drosophila PTEN-induced kinase 1 (PINK1) null mutant. J. Biol. Chem. 287, 12750-12758. crossref(new window)

Kukidome, D., Nishikawa, T., Sonoda, K., Imoto, K., Fujisawa, K., Yano, M., Motoshima, H., Taguchi, T., Matsumura, T., and Araki, E. (2006). Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55, 120-127. crossref(new window)

La Spada, A.R. (2012). PPARGC1A/PGC-$1{\alpha}$, TFEB and enhanced proteostasis in Huntington disease: defining regulatory linkages between energy production and protein-organelle quality control. Autophagy 8, 1845-1847. crossref(new window)

Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-1122. crossref(new window)

Lan, F., Cacicedo, J.M., Ruderman, N., and Ido, Y. (2008). SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 283, 27628-27635. crossref(new window)

Leick, L., Fentz, J., Bienso, R.S., Knudsen, J.G., Jeppesen, J., Kiens, B., Wojtaszewski, J.F.P., and Pilegaard, H. (2010). PGC- 1{alpha} is required for AICAR-induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 299, E456-E465. crossref(new window)

Li, X., Monks, B., Ge, Q., and Birnbaum, M.J. (2007). Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447, 1012-1016. crossref(new window)

Lim, J.H., Lee, Y.M., Chun, Y.S., Chen, J., Kim, J.E., and Park, J.W. (2010). Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell 38, 864- 878. crossref(new window)

Liu, M., Wilk, S.A., Wang, A., Zhou, L., Wang, R.H., Ogawa, W., Deng, C., Dong, L.Q., and Liu, F. (2010). Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J. Biol. Chem. 285, 36387-36394. crossref(new window)

Longo, V.D. (2009). Linking sirtuins, IGF-I signaling, and starvation. Exp. Gerontol. 44, 70-74. crossref(new window)

Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148. crossref(new window)

McBurney, M.W., Yang, X., Jardine, K., Hixon, M., Boekelheide, K., Webb, J.R., Lansdorp, P.M., and Lemieux, M. (2003). The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell Biol. 23, 38-54. crossref(new window)

Meshkini, A., and Yazdanparast, R. (2012). Foxo3a targets mitochondria during guanosine 5'-triphosphate guided erythroid differentiation. Int. J. Biochem. Cell Biol. 44, 1718-1728. crossref(new window)

Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C., and Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell. 16, 4623-4635. crossref(new window)

Mishra, P., and Chan, D.C. (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634-646. crossref(new window)

Mitchell, S.J., Martin-Montalvo, A., Mercken, E.M., Palacios, H.H., Ward, T.M., Abulwerdi, G., Minor, R.K., Vlasuk, G.P., Ellis, J.L., Sinclair, D.A., et al. (2014). The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836-843. crossref(new window)

Mouchiroud, L., Houtkooper, R.H., Moullan, N., Katsyuba, E., Ryu, D., Canto, C., Mottis, A., Jo, Y.S., Viswanathan, M., Schoonjans, K., et al. (2013). The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430-441. crossref(new window)

Mudo, G., Makela, J., Di Liberto, V., Tselykh, T.V., Olivieri, M., Piepponen, P., Eriksson, O., Malkia, A., Bonomo, A., Kairisalo, M., et al. (2012). Transgenic expression and activation of PGC-1${\alpha}$ protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell. Mol. Life Sci. 69, 1153-1165. crossref(new window)

Mullin, S., and Schapira, A. (2015). The genetics of Parkinson's disease. Br Med. Bull. 114, 39-52. crossref(new window)

Murayama, A., Ohmori, K., Fujimura, A., Minami, H., Yasuzawa- Tanaka, K., Kuroda, T., Oie, S., Daitoku, H., Okuwaki, M., Nagata, K., et al. (2008). Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133, 627-639. crossref(new window)

Nemoto, S., Fergusson, M.M., and Finkel, T. (2005). SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J. Biol. Chem. 280, 16456-16460. crossref(new window)

Ng, F., and Tang, B.L. (2013). Sirtuins' modulation of autophagy. J. Cell. Physiol. 228, 2262-2270. crossref(new window)

Ng, F., Wijaya, L., and Tang, B.L. (2015). SIRT1 in the brainconnections with aging-associated disorders and lifespan. Front. Cell Neurosci. 9, 64.

Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., Falcone, S., Valerio, A., Cantoni, O., Clementi, E., et al. (2005). Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314-317. crossref(new window)

Olmos, Y., Sanchez-Gomez, F.J., Wild, B., Garcia-Quintans, N., Cabezudo, S., Lamas, S., and Monsalve, M. (2013). SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-$1{\alpha}$ complex. Antioxid. Redox Signal. 19, 1507- 1521. crossref(new window)

Ou, X., Lee, M.R., Huang, X., Messina-Graham, S., and Broxmeyer, H.E. (2014). SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells 32, 1183-1194. crossref(new window)

Pacelli, C., De Rasmo, D., Signorile, A., Grattagliano, I., di Tullio, G., D'Orazio, A., Nico, B., Comi, G.P., Ronchi, D., Ferranini, E., et al. (2011). Mitochondrial defect and PGC-$1{\alpha}$ dysfunction in parkinassociated familial Parkinson's disease. Biochim. Biophys. Acta 1812, 1041-1053. crossref(new window)

Pacholec, M., Bleasdale, J.E., Chrunyk, B., Cunningham, D., Flynn, D., Garofalo, R.S., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., et al. (2010). SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 285, 8340- 8351. crossref(new window)

Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L., and Denko, N.C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197. crossref(new window)

Park, S.J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A.L., et al. (2012). Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421-433. crossref(new window)

Philp, A., Chen, A., Lan, D., Meyer, G.A., Murphy, A.N., Knapp, A.E., Olfert, I.M., McCurdy, C.E., Marcotte, G.R., Hogan, M.C., et al. (2011). Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J. Biol. Chem. 286, 30561-30570. crossref(new window)

Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M.W., and Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771-776. crossref(new window)

Price, N.L., Gomes, A.P., Ling, A.J., Duarte, F.V., Martin-Montalvo, A., North, B.J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J.S., et al. (2012). SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675-690. crossref(new window)

Reznick, R.M., and Shulman, G.I. (2006). The role of AMP-activated protein kinase in mitochondrial biogenesis. J. Physiol. 574, 33- 39. crossref(new window)

Reznick, R.M., Zong, H., Li, J., Morino, K., Moore, I.K., Yu, H.J., Liu, Z.X., Dong, J., Mustard, K.J., Hawley, S.A., et al. (2007). Agingassociated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 5, 151-156. crossref(new window)

Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113-118. crossref(new window)

Rogina, B., and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA. 101, 15998-16003. crossref(new window)

Rona-Voros, K., and Weydt, P. (2010). The role of PGC-$1{\alpha}$ in the pathogenesis of neurodegenerative disorders. Curr. Drug Targets 11, 1262-1269. crossref(new window)