JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 3,  2016, pp.186-194
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2159
 Title & Authors
Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling
Wang, Yuli; Ma, Junchi; Du, Yifei; Miao, Jing; Chen, Ning;
  PDF(new window)
 Abstract
Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs significantly promoted the proliferation and osteoblastic differentiation of -induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency.
 Keywords
ERK1/2 MAPK signal transduction pathway;human amnion mesenchymal stem cells (HAMSCs);human bone marrow mesenchymal stem cells (HBMSCs);oxidative stress;reactive oxygen species (ROS);
 Language
English
 Cited by
1.
Hydrogen sulfide promotes osteogenic differentiation of human periodontal ligament cells via p38-MAPK signaling pathway under proper tension stimulation, Archives of Oral Biology, 2016, 72, 8  crossref(new windwow)
 References
1.
Baek, K.H., Oh, K.W., Lee, W.Y., Lee, S.S., Kim, M.K., Kwon, H.S., Rhee, E.J., Han, J.H., Song, K.H., Cha, B.Y., et al. (2010). Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif. Tissue Int. 87, 226-235. crossref(new window)

2.
Bai, X.C., Lu, D., Bai, J., Zheng, H., Ke, Z.Y., Li, X.M., and Luo, S.Q. (2004). Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem. Biophys. Res. Commun. 314, 197-207. crossref(new window)

3.
Basu, S., Michaelsson, K., Olofsson, H., Johansson, S., and Melhus, H. (2001). Association between oxidative stress and bone mineral density. Biochem. Biophys. Res. Commun. 288, 275-279. crossref(new window)

4.
Bourne, G.L. (1960). The microscopic anatomy of the human amnion and chorion. Am. J. Obstet. Gynecol. 79, 1070-1073. crossref(new window)

5.
Chen, Y.J., Chung, M.C., Jane Yao, C.C., Huang, C.H., Chang, H.H., Jeng, J.H., and Young, T.H. (2012). The effects of acellular amniotic membrane matrix on osteogenic differentiation and ERK1/2 signaling in human dental apical papilla cells. Biomaterials 33, 455-463. crossref(new window)

6.
Fatokun, A.A., Stone, T.W., and Smith, R.A. (2008). Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species. Eur. J. Pharmacol. 587, 35-41. crossref(new window)

7.
Franceschi, R.T., and Xiao, G. (2003). Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J. Cell. Biochem. 88, 446-454. crossref(new window)

8.
Franceschi, R.T., Xiao, G., Jiang, D., Gopalakrishnan, R., Yang, S., and Reith, E. (2003). Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connec. Tissue Res. 44 Suppl 1, 109-116. crossref(new window)

9.
Franceschi, R.T., Ge, C., Xiao, G., Roca, H., and Jiang, D. (2009). Transcriptional regulation of osteoblasts. Cells Tissues Organs 189, 144-152.

10.
Galli, C., Passeri, G., and Macaluso, G.M. (2010). Osteocytes and WNT: the mechanical control of bone formation. J. Dental Res. 89, 331-343. crossref(new window)

11.
Haigis, M.C., and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Ann. Rev. Pathol. 5, 253-295. crossref(new window)

12.
Hammond, C.L., and Schulte-Merker, S. (2009). Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling. Development 136, 3991-4000. crossref(new window)

13.
Herbert, B.A., Valerio, M.S., Gaestel, M., and Kirkwood, K.L. (2015). Sexual dimorphism in MAPK-activated protein kinase-2 (MK2) regulation of RANKL-induced osteoclastogenesis in osteoclast progenitor subpopulations. PLoS One 10, e0125387. crossref(new window)

14.
Hertz, J. (1956). Problems of maxillofacial and oral surgery. J. Int. College Surg. 26, 63-79.

15.
Hu, H.M., Yang, L., Wang, Z., Liu, Y.W., Fan, J.Z., Fan, J., Liu, J., and Luo, Z.J. (2013). Overexpression of integrin a2 promotes osteogenic differentiation of hBMSCs from senile osteoporosis through the ERK pathway. Int. J. Clin. Exp. Pathol. 6, 841-852.

16.
Hu, N., Feng, C., Jiang, Y., Miao, Q., and Liu, H. (2015). Regulative effect of Mir-205 on osteogenic differentiation of bone mesenchymal stem cells (BMSCs): possible role of SATB2/Runx2 and ERK/MAPK pathway. Int. J. Mol. Sci. 16, 10491-10506. crossref(new window)

17.
Huang, Q., Gao, B., Wang, L., Zhang, H.Y., Li, X.J., Shi, J., Wang, Z., Zhang, J.K., Yang, L., Luo, Z.J., et al. (2015). Ophiopogonin D: A new herbal agent against osteoporosis. Bone 74, 18-28. crossref(new window)

18.
Ito, K., Yamada, Y., Naiki, T., and Ueda, M. (2006). Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clin. Oral. Implants Res. 17, 579-586. crossref(new window)

19.
Kang, Y., Kim, S., Fahrenholtz, M., Khademhosseini, A., and Yang, Y. (2013). Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomater. 9, 4906-4915. crossref(new window)

20.
Karlin, J.R. (1971). Oral implantology. Greater Milw. Dent. Bull. 37, 226-231.

21.
Ki, Y.W., Park, J.H., Lee, J.E., Shin, I.C., and Koh, H.C. (2013). JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol. Lett. 218, 235-245. crossref(new window)

22.
Kim, S.H., Kim, K.H., Seo, B.M., Koo, K.T., Kim, T.I., Seol, Y.J., Ku, Y., Rhyu, I.C., Chung, C.P., and Lee, Y.M. (2009). Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. J. Periodontol. 80, 1815-1823. crossref(new window)

23.
Krum, S.A., Chang, J., Miranda-Carboni, G., and Wang, C.Y. (2010). Novel functions for NFkappaB: inhibition of bone formation. Nat. Rev. Rheumatol. 6, 607-611. crossref(new window)

24.
Leyva-Leyva, M., Barrera, L., Lopez-Camarillo, C., Arriaga-Pizano, L., Orozco-Hoyuela, G., Carrillo-Casas, E.M., Calderon-Perez, J., Lopez-Diaz, A., Hernandez-Aguilar, F., Gonzalez-Ramirez, R., et al. (2013). Characterization of mesenchymal stem cell subpopulations from human amniotic membrane with dissimilar osteoblastic potential. Stem Cells Dev. 22, 1275-1287. crossref(new window)

25.
Lippuner, K. (2012). The future of osteoporosis treatment - a research update. Swiss medical weekly 142, w13624.

26.
Liu, A.L., Zhang, Z.M., Zhu, B.F., Liao, Z.H., and Liu, Z. (2004). Metallothionein protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation. Cell Biol. Int. 28, 905-911. crossref(new window)

27.
Maggio, D., Barabani, M., Pierandrei, M., Polidori, M.C., Catani, M., Mecocci, P., Senin, U., Pacifici, R., and Cherubini, A. (2003). Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J. Clin. Endocrinol. Metabol. 88, 1523-1527. crossref(new window)

28.
Maire, P. (1997). [Calibrated autologous bone grafts--their use in oral implantology. Widening--crest augmentation. Personal technic]. Rev. Stomatol. Chir. Maxillofac. 98 Suppl 1, 27-30.

29.
Marcus, A.J., Coyne, T.M., Rauch, J., Woodbury, D., and Black, I.B. (2008). Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76, 130-144. crossref(new window)

30.
Martindale, J.L., and Holbrook, N.J. (2002). Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192, 1-15. crossref(new window)

31.
Mody, N., Parhami, F., Sarafian, T.A., and Demer, L.L. (2001). Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 31, 509-519. crossref(new window)

32.
Moriwaki, S., Suzuki, K., Muramatsu, M., Nomura, A., Inoue, F., Into, T., Yoshiko, Y., and Niida, S. (2014). Delphinidin, one of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoporosis model mice. PLoS One 9, e97177. crossref(new window)

33.
Muthusami, S., Ramachandran, I., Muthusamy, B., Vasudevan, G., Prabhu, V., Subramaniam, V., Jagadeesan, A., and Narasimhan, S. (2005). Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin. Chim. Acta 360, 81-86. crossref(new window)

34.
Nakano, T., and Yatani, H. (2007). [Bone augmentation of dental implant treatment]. Clin. Calcium 17, 256-262.

35.
Ollivere, B., Wimhurst, J.A., Clark, I.M., and Donell, S.T. (2012). Current concepts in osteolysis. J. Bone Joint Surg. Br. 94, 10-15.

36.
Ozeki, K., Aoki, H., and Fukui, Y. (2008). The effect of adsorbed vitamin D and K to hydroxyapatite on ALP activity of MC3T3-E1 cell. J. Mater. Sci. 19, 1753-1757.

37.
Ozgocmen, S., Kaya, H., Fadillioglu, E., Aydogan, R., and Yilmaz, Z. (2007). Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol. Cell. Biochem. 295, 45-52. crossref(new window)

38.
Phimphilai, M., Zhao, Z., Boules, H., Roca, H., and Franceschi, R.T. (2006). BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J. Bone Miner. Res. 21, 637-646. crossref(new window)

39.
Qin, L., Tang, B., Deng, B., Mohan, C., Wu, T., and Peng, A. (2015). Extracellular regulated protein kinases play a key role via bone morphogenetic protein 4 in high phosphate-induced endothelial cell apoptosis. Life Sci. 131, 37-43. crossref(new window)

40.
Reinholz, G.G., Getz, B., Pederson, L., Sanders, E.S., Subramaniam, M., Ingle, J.N., and Spelsberg, T.C. (2000). Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 60, 6001-6007.

41.
Salasznyk, R.M., Klees, R.F., Hughlock, M.K., and Plopper, G.E. (2004). ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Commun. Adhes. 11, 137-153. crossref(new window)

42.
Schindeler, A., and Little, D.G. (2006). Ras-MAPK signaling in osteogenic differentiation: friend or foe? J. Bone Miner Res. 21, 1331-1338. crossref(new window)

43.
Schneider, G.B., Whitson, S.W., and Cooper, L.F. (1999). Restricted and coordinated expression of beta3-integrin and bone sialoprotein during cultured osteoblast differentiation. Bone 24, 321-327. crossref(new window)

44.
Sendur, O.F., Turan, Y., Tastaban, E., and Serter, M. (2009). Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine 76, 514-518. crossref(new window)

45.
Simmons, C.A., Matlis, S., Thornton, A.J., Chen, S., Wang, C.Y., and Mooney, D.J. (2003). Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech. 36, 1087-1096. crossref(new window)

46.
Sontakke, A.N., and Tare, R.S. (2002). A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin. Chim. Acta 318, 145-148. crossref(new window)

47.
Stoler, A. (1984). Oral implantology today. Florida Dental J. 55, 36-37, 54.

48.
Tsuji, H., Miyoshi, S., Ikegami, Y., Hida, N., Asada, H., Togashi, I., Suzuki, J., Satake, M., Nakamizo, H., Tanaka, M., et al. (2010). Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ. Res. 106, 1613-1623. crossref(new window)

49.
Wang, S., Zhang, Z., Zhao, J., Zhang, X., Sun, X., Xia, L., Chang, Q., Ye, D., and Jiang, X. (2009). Vertical alveolar ridge augmentation with beta-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials 30, 2489-2498. crossref(new window)

50.
Wang, W., Olson, D., Cheng, B., Guo, X., and Wang, K. (2012). Sanguis Draconis resin stimulates osteoblast alkaline phosphatase activity and mineralization in MC3T3-E1 cells. J. Ethnopharmacol. 142, 168-174. crossref(new window)

51.
Wang, Y., Yan, M., Yu, Y., Wu, J., Yu, J., and Fan, Z. (2013). Estrogen deficiency inhibits the odonto/osteogenic differentiation of dental pulp stem cells via activation of the NF-kappaB pathway. Cell Tissue Res. 352, 551-559. crossref(new window)

52.
Wang, Y., Yin, Y., Jiang, F., and Chen, N. (2014). Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells. J. Mol. Histol. 46, 13-20.

53.
Wang, Y., Yin, Y., Jiang, F., and Chen, N. (2015). Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells. J. Mol. Histol. 46, 13-20. crossref(new window)

54.
Witko-Sarsat, V., Friedlander, M., Capeillere-Blandin, C., Nguyen- Khoa, T., Nguyen, A.T., Zingraff, J., Jungers, P., and Descamps-Latscha, B. (1996). Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 49, 1304-1313. crossref(new window)

55.
Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., and Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331. crossref(new window)

56.
Xiao, G., Gopalakrishnan, R., Jiang, D., Reith, E., Benson, M.D., and Franceschi, R.T. (2002). Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J. Bone Miner. Res. 17, 101-110. crossref(new window)

57.
Yang, S., Madyastha, P., Bingel, S., Ries, W., and Key, L. (2001). A new superoxide-generating oxidase in murine osteoclasts. J. Biol. Chem. 276, 5452-5458. crossref(new window)

58.
Zeng, X., Tian, J., Cai, K., Wu, X., Wang, Y., Zheng, Y., Su, Y., and Cui, L. (2014). Promoting osteoblast differentiation by the flavanes from Huangshan Maofeng tea is linked to a reduction of oxidative stress. Phytomedicine 21, 217-224. crossref(new window)

59.
Zhang, W., and Liu, H.T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12, 9-18. crossref(new window)

60.
Zhang, D., Jiang, M., and Miao, D. (2011). Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One 6, e16789. crossref(new window)

61.
Zhao, J., Zhang, Z., Wang, S., Sun, X., Zhang, X., Chen, J., Kaplan, D.L., and Jiang, X. (2009). Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 45, 517-527. crossref(new window)