JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 3,  2016, pp.195-203
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2198
 Title & Authors
Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells
Seo, Youngsik; Cho, Young-Sik; Huh, Young-Duk; Park, Heonyong;
  PDF(new window)
 Abstract
Copper is an essential element required for a variety of functions exerted by cuproproteins. An alteration of the copper level is associated with multiple pathological conditions including chronic ischemia, atherosclerosis and cancers. Therefore, copper homeostasis, maintained by a combination of two copper ions ( and ), is critical for health. However, less is known about which of the two copper ions is more toxic or functional in endothelial cells. Cubic-shaped and CuO crystals were prepared to test the role of the two different ions, and , respectively. The crystal was found to have an effect on cell death in endothelial cells whereas CuO had no effect. The crystals appeared to induce p62 degradation, LC3 processing and an elevation of LC3 puncta, important processes for autophagy, but had no effect on apoptosis and necrosis. crystals promote endothelial cell death via autophagy, elevate the level of reactive oxygen species such as superoxide and nitric oxide, and subsequently activate AMP-activated protein kinase (AMPK) through superoxide rather than nitric oxide. Consistently, the AMPK inhibitor Compound C was found to inhibit -induced AMPK activation, p62 degradation, and LC3 processing. This study provides insight on the pathophysiologic function of ions in the vascular system, where induces autophagy while has no detected effect.
 Keywords
autophagy;cuprous oxide;LC3;p62;superoxide;
 Language
English
 Cited by
1.
The double faced role of copper in Aβ homeostasis: A survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration, Coordination Chemistry Reviews, 2017, 347, 1  crossref(new windwow)
2.
Delphinidin-rich extracts of Hibiscus sabdariffa L. trigger mitochondria-derived autophagy and necrosis through reactive oxygen species in human breast cancer cells, Journal of Functional Foods, 2016, 25, 279  crossref(new windwow)
3.
Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu–O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos, ACS Nano, 2017, 11, 1, 501  crossref(new windwow)
 References
1.
Abello, P.A., Fidler, S.A., Bulkley, G.B., and Buchman, T.G. (1994). Antioxidants modulate induction of programmed endothelial cell death (apoptosis) by endotoxin. Arch. Surg. 129, 134-140. crossref(new window)

2.
Ahn, S., Park, J., An, I., Jung, S.J., and Hwang, J. (2014). Transient receptor potential cation channel V1 (TRPV1) is degraded by starvation- and glucocorticoid-mediated autophagy. Mol. Cells 37, 257-263. crossref(new window)

3.
Altekin, E., Coker, C., Sişman, A.R., Onvural, B., Kuralay, F., and Kirimli, O. (2005). The relationship between trace elements and cardiac markers in acute coronary syndromes. J. Trace Elem. Med. Biol. 18, 235-242. crossref(new window)

4.
Bar-Or, D., Rael, L.T., Lau, E.P., Rao, N.K., Thomas, G.W., Winkler, J.V., Yukl, R.L., Kingston, R.G., and Curtis, C.G. (2001). An analog of the human albumin N-terminus (Asp-Ala-His-Lys) prevents formation of copper-induced reactive oxygen species. Biochem. Biophys. Res. Commun. 284, 856-862. crossref(new window)

5.
Barbusinski, K. (2009). Fenton reaction-controversy concerning the chemistry. Ecol. Chem. Eng. S 16, 347-358.

6.
Barth, S., Glick, D., and Macleod, K.F. (2010). Autophagy: assays and artifacts. J. Pathol. 221, 117-124. crossref(new window)

7.
Chevion, M., Jiang, Y., Har-El, R., Berenshtein, E., Uretzky, G., and Kitrossky, N. (1993). Copper and iron are mobilized following myocardial ischemia: possible predictive criteria for tissue injury. Proc. Natl. Acad. Sci. USA 90, 1102-1106. crossref(new window)

8.
Choi, Y.J., Park, Y.J., Park, J.Y., Jeong, H.O., Kim, D.H., Ha, Y.M., Kim, J.M., Song, Y.M., Heo, H.S., Yu, B.P., et al. (2012). Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion. PLoS One 7, e43418. crossref(new window)

9.
Clarke, M., Bennett, M., and Littlewood, T. (2007). Cell death in the cardiovascular system. Heart 93, 659-664. crossref(new window)

10.
Diaz-Troya, S., Perez-Perez, M.E., Florencio, F.J., and Crespo, J.L. (2008). The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4, 851-865. crossref(new window)

11.
Dimmeler, S., and Zeiher, A.M. (2000). Endothelial cell apoptosis in angiogenesis and vessel regression. Circ. Res. 87, 434-439. crossref(new window)

12.
Dortwegt, R., and Maughan, E. (2001). The chemistry of copper in water and related studies planned at the advanced photon source. Conf. Proc. C0106181, 1456-1458

13.
Gallagher, C.H., and Reeve, V.E. (1971). Copper deficiency in the rat. Effect on liver and brain lipids. Aust. J. Exp. Biol. Med. Sci. 49, 453-461. crossref(new window)

14.
Glick, D., Barth, S., and Macleod, K.F. (2010). Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12. crossref(new window)

15.
He, C., Bassik, M.C., Moresi, V., Sun, K., Wei, Y., Zou, Z., An, Z., Loh, J., Fisher, J., Sun, Q., et al. (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511-515. crossref(new window)

16.
Hordyjewska, A., Popiolek, L., and Kocot, J. (2014). The many "faces" of copper in medicine and treatment. Biometals 27, 611-621. crossref(new window)

17.
Ishida, S., Andreux, P., Poitry-Yamate, C., Auwerx, J., and Hanahan, D. (2013). Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA. 110, 19507-19512. crossref(new window)

18.
Kim, J., Park, J., Choi, S., Chi, S.G., Mowbray, A.L., Jo, H., and Park, H. (2008). X-linked inhibitor of apoptosis protein is an important regulator of vascular endothelial growth factor-dependent bovine aortic endothelial cell survival. Circ. Res. 102, 896-904. crossref(new window)

19.
Kundu, M., Lindsten, T., Yang, C.Y., Wu, J., Zhao, F., Zhang, J., Selak, M.A., Ney, P.A., and Thompson, C.B. (2008). Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493-1502. crossref(new window)

20.
Laha, D., Pramanik, A., Maity, J., Mukherjee, A., Pramanik, P., Laskar, A., and Karmakar, P. (2014). Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim. Biophys. Acta 1840, 1-9. crossref(new window)

21.
Lee, H.R., Kim, J., Park, J., Ahn, S., Jeong, E., and Park, H. (2013). FERM domain promotes resveratrol-induced apoptosis in endothelial cells via inhibition of NO production. Biochem. Biophys. Res. Commun. 441, 891-896. crossref(new window)

22.
Linder, M.C., and Hazegh-Azam, M. (1996). Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 63, 797S-811S.

23.
Martinet, W., and De Meyer, G.R. (2009). Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ. Res. 104, 304-317. crossref(new window)

24.
Palmer, D.A., Benezeth, P., and Simonson, J.M. (2004). Solubility of copper oxides in water and steam. In 14th International Conference on the Properties of Water and Steam in Kyoto pp. 491-496.

25.
Powell, S.R., Gurzenda, E.M., Wingertzahn, M.A., and Wapnir, R.A. (1999). Promotion of copper excretion from the isolated rat heart attenuates postischemic cardiac oxidative injury. Am. J. Physiol-Heart C. 277, H956-H962.

26.
Rael, L.T., Rao, N.K., Thomas, G.W., Bar-Or, R., Curtis, C.G., and Bar-Or, D. (2007). Combined cupric- and cuprous-binding peptides are effective in preventing IL-8 release from endothelial cells and redox reactions. Biochem. Biophys. Res. Commun. 357, 543-548. crossref(new window)

27.
Rajendran, R., Ren, M., Ning, P., Huat, B. T. K., Halliwell, B., and Watt, F. (2007). Promotion of atherogenesis by copper or iron-Which is more likely? Biochem. Biophys. Res. Commun. 353, 6-10. crossref(new window)

28.
Rigo, A., Stevanato, R., Finazzi-Agro, A., and Rotilio, G. (1977). An attempt to evaluate the rate of the Haber-Weiss reaction by using OH radical scavengers. FEBS Lett. 80, 130-132. crossref(new window)

29.
Robaye, B., Mosselmans, R., Fiers, W., Dumont, J.E., and Galand, P. (1991). Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am. J. Pathol. 138, 447-453.

30.
Ryter, S.W., Lee, S.J., Smith, A., and Choi, A.M. (2010). Autophagy in vascular disease. Proc. Am. Thorac. Soc. 7, 40-47. crossref(new window)

31.
Shaw, R.J. (2009). LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol. 196, 65-80. crossref(new window)

32.
Shimomura, H., Terasaki, F., Hayashi, T., Kitaura, Y., Isomura, T., and Suma, H. (2001). Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn. Circ. J. 65, 965-968. crossref(new window)

33.
Shokrzadeh, M., Ghaemian, A., Salehifar, E., Aliakbari, S., Saravi, S.S., and Ebrahimi, P. (2009). Serum zinc and copper levels in ischemic cardiomyopathy. Biol. Trace Elem. Res. 127,116-123. crossref(new window)

34.
Singh, I., Sagare, A.P., Coma, M., Perlmutter, D., Gelein, R., Bell, R.D., Deane, R.J., Zhong, E., Parisi, M., Ciszewski, J., et al. (2013). Low levels of copper disrupt brain amyloid-$\beta$ homeostasis by altering its production and clearance. Proc. Natl. Acad. Sci. USA 110, 14771-14776. crossref(new window)

35.
Sun, T., Yan, Y., Zhao, Y., Guo, F., and Jiang, C. (2012). Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS One 7, e43442. crossref(new window)

36.
Szabo, C., Ischiropoulos, H., and Radi, R. (2007). Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662-680. crossref(new window)

37.
Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E.L., Hartmann, D., Lullmann-Rauch, R., Janssen, P.M., Blanz, J., von Figura, K., and Saftig, P. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902-906. crossref(new window)

38.
Yu, K.N., Yoon, T.J., Minai-Tehrani, A., Kim, J.E., Park, S.J., Jeong, M.S., Ha, S.W., Lee, J.K., Kim, J.S., and Cho, M.H. (2013). Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol. In Vitro 27, 1187-1195. crossref(new window)

39.
Zhao, J.G., Yang, S.H., and Yang, S.G. (2012). Controllable onestep synthesis of CuO, Cu2O and Cu. Cryst. Res.Technol. 47, 1064-1068. crossref(new window)