Advanced SearchSearch Tips
Structural Analysis of the Streptomyces avermitilis CYP107W1-Oligomycin A Complex and Role of the Tryptophan 178 Residue
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 3,  2016, pp.211-216
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2226
 Title & Authors
Structural Analysis of the Streptomyces avermitilis CYP107W1-Oligomycin A Complex and Role of the Tryptophan 178 Residue
Han, Songhee; Pham, Tan-Viet; Kim, Joo-Hwan; Lim, Young-Ran; Park, Hyoung-Goo; Cha, Gun-Su; Yun, Chul-Ho; Chun, Young-Jin; Kang, Lin-Woo; Kim, Donghak;
  PDF(new window)
CYP107W1 from Streptomyces avermitilis is a cytochrome P450 enzyme involved in the biosynthesis of macrolide oligomycin A. A previous study reported that CYP107W1 regioselectively hydroxylated C12 of oligomycin C to produce oligomycin A, and the crystal structure of ligand free CYP107W1 was determined. Here, we analyzed the structural properties of the CYP107W1-oligomycin A complex and characterized the functional role of the Trp178 residue in CYP107W1. The crystal structure of the CYP107W1 complex with oligomycin A was determined at a resolution of . Oligomycin A is bound in the substrate access channel on the upper side of the prosthetic heme mainly by hydrophobic interactions. In particular, the Trp178 residue in the active site intercalates into the large macrolide ring, thereby guiding the substrate into the correct binding orientation for a productive P450 reaction. A Trp178 to Gly mutation resulted in the distortion of binding titration spectra with oligomycin A, whereas binding spectra with azoles were not affected. The Gly178 mutant`s catalytic turnover number for the 12-hydroxylation reaction of oligomycin C was highly reduced. These results indicate that Trp178, located in the open pocket of the active site, may be a critical residue for the productive binding conformation of large macrolide substrates.
CYP;CYP107W1;oligomycin;P450;Streptomyces avermitilis;X-ray crystal structure;
 Cited by
Structural insights into the binding of lauric acid to CYP107L2 from Streptomyces avermitilis, Biochemical and Biophysical Research Communications, 2017, 482, 4, 902  crossref(new windwow)
Characterization of a Biflaviolin Synthase CYP158A3 fromStreptomyces avermitilisand Its Role in the Biosynthesis of Secondary Metabolites, Biomolecules & Therapeutics, 2017, 25, 2, 171  crossref(new windwow)
Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function, Nat. Prod. Rep., 2017, 34, 9, 1141  crossref(new windwow)
Recent Structural Insights into Cytochrome P450 Function, Trends in Pharmacological Sciences, 2016, 37, 8, 625  crossref(new windwow)
Burg, R.W., Miller, B.M., Baker, E.E., Birnbaum, J., Currie, S.A., Hartman, R., Kong, Y.L., Monaghan, R.L., Olson, G., Putter, I., et al. (1979). Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15, 361-367. crossref(new window)

Choi, S., Han, S., Lee, H., Chun, Y.J., and Kim, D. (2013). Evaluation of Luminescent P450 analysis for directed evolution of human CYP4A11. Biomol. Ther. 21, 487-492. crossref(new window)

Durairaj, P., Malla, S., Nadarajan, S.P., Lee, P.G., Jung, E., Park, H.H., Kim, B.G., and Yun, H. (2015). Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of omega-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb Cell Fact 14, 45. crossref(new window)

Dyson, P. (2011). Streptomyces: Molecular Biology and Biotechnology (Norfolk, UK, Caister Academic Press).

Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126-2132. crossref(new window)

Han, S., Pham, T.V., Kim, J.H., Lim, Y.R., Park, H.G., Cha, G.S., Yun, C.H., Chun, Y.J., Kang, L.W., and Kim, D. (2015). Functional characterization of CYP107W1 from Streptomyces avermitilis and biosynthesis of macrolide oligomycin A. Arch. Biochem. Biophys. 575, 1-7. crossref(new window)

Ikeda, H., Nonomiya, T., Usami, M., Ohta, T., and Omura, S. (1999). Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 96, 9509-9514. crossref(new window)

Kelly, S.L., Kelly, D.E., Jackson, C.J., Warrilow, A.G.S., and Lamb, D.C. (2005). The diversity and importance of microbial cytochrome P450. In cytochrome P450: structure, mechanism, and biochemistry, P.R. Ortiz de Montellano, ed. (New York, Plenum Press), pp. 585-617.

Kim, D., Cha, G.S., Nagy, L.D., Yun, C.H., and Guengerich, F.P. (2014). Kinetic analysis of lauric acid hydroxylation by human cytochrome P450 4A11. Biochemistry 53, 6161-6172. crossref(new window)

Lamb, D.C., Zhao, B., Guengerich, F.P., Kelly, S.L., and Waterman, M.R. (2011). Genomics of Streptomyces cytochrome P450. In streptomyces molecular biology and biotechnology, P. Dyson, ed. (Norfolk, UK, Caister Academic Press), pp. 233-253.

Lee, H., Kim, J.H., Han, S., Lim, Y.R., Park, H.G., Chun, Y.J., Park, S.W., and Kim, D. (2014). Directed-evolution analysis of human cytochrome P450 2A6 for enhanced enzymatic catalysis. J. Toxicol. Environ. Health A 77, 1409-1418. crossref(new window)

Li, S., Tietz, D.R., Rutaganira, F.U., Kells, P.M., Anzai, Y., Kato, F., Pochapsky, T.C., Sherman, D.H., and Podust, L.M. (2012). Substrate recognition by the multifunctional cytochrome P450 MycG in mycinamicin hydroxylation and epoxidation reactions. J. Biol. Chem. 287, 37880-37890. crossref(new window)

Lim, Y.R., Hong, M.K., Kim, J.K., Doan, T.T., Kim, D.H., Yun, C.H., Chun, Y.J., Kang, L.W., and Kim, D. (2012). Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway. Arch. Biochem. Biophys. 528, 111-117. crossref(new window)

Min, H., Kawasaki, I., Gong, J., and Shim, Y.H. (2015). Caffeine induces high expression of cyp-35A family genes and inhibits the early larval development in Caenorhabditis elegans. Mol. Cells 38, 236-242. crossref(new window)

Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. crossref(new window)

Schenkman, J.B., Remmer, H., and Estabrook, R.W. (1967). Spectral studies of drug interaction with hepatic microsomal cytochrome P-450. Mol. Pharmacol. 3, 113-123.

Schrodinger, L. (2010). The PyMOL Molecular Graphics System, Version 1.3r1.

Schuttelkopf, A.W., and van Aalten, D.M. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D. Biol. Crystallogr. 60, 1355-1363. crossref(new window)

Symersky, J., Osowski, D., Walters, D.E., and Mueller, D.M. (2012). Oligomycin frames a common drug-binding site in the ATP synthase. Proc. Natl. Acad. Sci. USA 109, 13961-13965. crossref(new window)

Vagin, A., and Teplyakov, A. (1997). MOLREP: an Automated Program for Molecular Replacement. J. Appl. Cryst. 30, 1022-1025. crossref(new window)

Xu, L.H., Fushinobu, S., Ikeda, H., Wakagi, T., and Shoun, H. (2009). Crystal structures of cytochrome P450 105P1 from Streptomyces avermitilis: conformational flexibility and histidine ligation state. J. Bacteriol. 191, 1211-1219. crossref(new window)

Xu, L.H., Fushinobu, S., Takamatsu, S., Wakagi, T., Ikeda, H., and Shoun, H. (2010). Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis. J. Biol. Chem. 285, 16844-16853. crossref(new window)