JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Structural and Mechanistic Insights into the Tropism of Epstein-Barr Virus
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 4,  2016, pp.286-291
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.0066
 Title & Authors
Structural and Mechanistic Insights into the Tropism of Epstein-Barr Virus
Mohl, Britta S.; Chen, Jia; Sathiyamoorthy, Karthik; Jardetzky, Theodore S.; Longnecker, Richard;
  PDF(new window)
 Abstract
Epstein-Barr virus (EBV) is the prototypical -herpesvirus and an obligate human pathogen that infects mainly epithelial cells and B cells, which can result in malignancies. EBV infects these target cells by fusing with the viral and cellular lipid bilayer membranes using multiple viral factors and host receptor(s) thus exhibiting a unique complexity in its entry machinery. To enter epithelial cells, EBV requires minimally the conserved core fusion machinery comprised of the glycoproteins gH/gL acting as the receptor-binding complex and gB as the fusogen. EBV can enter B cells using gp42, which binds tightly to gH/gL and interacts with host HLA class II, activating fusion. Previously, we published the individual crystal structures of EBV entry factors, such as gH/gL and gp42, the EBV/host receptor complex, gp42/HLA-DR1, and the fusion protein EBV gB in a postfusion conformation, which allowed us to identify structural determinants and regions critical for receptor-binding and membrane fusion. Recently, we reported different low resolution models of the EBV B cell entry triggering complex (gHgL/gp42/HLA class II) in "open" and "closed" states based on negative-stain single particle electron microscopy, which provide further mechanistic insights. This review summarizes the current knowledge of these key players in EBV entry and how their structures impact receptor-binding and the triggering of gB-mediated fusion.
 Keywords
entry;Epstein-Barr virus;fusion;herpesvirus;tropism;
 Language
English
 Cited by
1.
The COMPLEXity in herpesvirus entry, Current Opinion in Virology, 2017, 24, 97  crossref(new windwow)
2.
Graves’ orbitopathy, idiopathic orbital inflammatory pseudotumor and Epstein–Barr virus infection: a serological and molecular study, Journal of Endocrinological Investigation, 2017, 40, 5, 499  crossref(new windwow)
3.
Inhibition of EBV-mediated membrane fusion by anti-gHgL antibodies, Proceedings of the National Academy of Sciences, 2017, 201704661  crossref(new windwow)
 References
1.
Adler, B. (2015). A viral pilot for HCMV navigation? Viruses 7, 3857- 3862. crossref(new window)

2.
Atanasiu, D., Whitbeck, J.C., de Leon, M.P., Lou, H., Hannah, B.P., Cohen, G.H., and Eisenberg, R.J. (2010). Bimolecular complementation defines functional regions of Herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J. Virol. 84, 3825-3834. crossref(new window)

3.
Backovic, M., Jardetzky, T.S., and Longnecker, R. (2007a). Hydrophobic residues that form putative fusion loops of Epstein- Barr virus glycoprotein B are critical for fusion activity. J. Virol. 81, 9596-9600. crossref(new window)

4.
Backovic, M., Leser, G.P., Lamb, R.A., Longnecker, R., and Jardetzky, T.S. (2007b). Characterization of EBV gB indicates properties of both class I and class II viral fusion proteins. Virology 368, 102-113. crossref(new window)

5.
Backovic, M., Longnecker, R., and Jardetzky, T.S. (2009). Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B. Proc. Natl. Acad. Sci. USA 106, 2880-2885. crossref(new window)

6.
Backovic, M., DuBois, R.M., Cockburn, J.J., Sharff, A.J., Vaney, M.C., Granzow, H., Klupp, B.G., Bricogne, G., Mettenleiter, T.C., and Rey, F.A. (2010). Structure of a core fragment of glycoprotein H from pseudorabies virus in complex with antibody. Proc. Natl. Acad. Sci. USA 107, 22635-22640. crossref(new window)

7.
Böhm, S.W., Eckroth, E., Backovic, M., Klupp, B.G., Rey, F.A., Mettenleiter, T.C., and Fuchs, W. (2015). Structure-based functional analyses of domains II and III of pseudorabies virus glycoprotein H. J. Virol. 89, 1364-1376. crossref(new window)

8.
Borza, C.M., and Hutt-Fletcher, L.M. (2002). Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat. Med. 8, 594-599. crossref(new window)

9.
Burke, H.G., and Heldwein, E.E. (2015). Crystal structure of the human cytomegalovirus Glycoprotein B. PLoS Pathog. 11, e1005227. crossref(new window)

10.
Cairns, T.M., Landsburg, D.J., Whitbeck, J.C., Eisenberg, R.J., and Cohen, G.H. (2005). Contribution of cysteine residues to the structure and function of herpes simplex virus gH/gL. Virology 332, 550-562. crossref(new window)

11.
Chandramouli, S., Ciferri, C., Nikitin, P.A., Calo, S., Gerrein, R., Balabanis, K., Monroe, J., Hebner, C., Lilja, A.E., Settembre, E.C., et al. (2015). Structure of HCMV glycoprotein B in the postfusion conformation bound to a neutralizing human antibody. Nat. Commun. 6, 8176. crossref(new window)

12.
Chen, J., Rowe, C.L., Jardetzky, T.S., and Longnecker, R. (2012). The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. MBio 3, pii: e00290-11.

13.
Chen, J., Jardetzky, T.S., and Longnecker, R. (2013). The large groove found in the gH/gL structure is an important functional domain for Epstein-Barr virus fusion. J. Virol. 87, 3620-3627. crossref(new window)

14.
Chen, J., Zhang, X., Jardetzky, T.S., and Longnecker, R. (2014). The Epstein-Barr virus (EBV) glycoprotein B cytoplasmic Cterminal tail domain regulates the energy requirement for EBVinduced membrane fusion. J. Virol. 88, 11686-11695. crossref(new window)

15.
Chesnokova, L.S., and Hutt-Fletcher, L.M. (2011). Fusion of Epstein-Barr virus with epithelial cells can be triggered by alphavbeta5 in addition to alphavbeta6 and alphavbeta8, and integrin binding triggers a conformational change in glycoproteins gHgL. J. Virol. 85, 13214-13223. crossref(new window)

16.
Chowdary, T.K., Cairns, T.M., Atanasiu, D., Cohen, G.H., Eisenberg, R.J., and Heldwein, E.E. (2010). Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat. Struct. Mol. Biol. 17, 882-888. crossref(new window)

17.
Connolly, S.A., Jackson, J.O., Jardetzky, T.S., and Longnecker, R. (2011). Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol 9, 369-381. crossref(new window)

18.
Dong, X., Hudson, N.E., Lu, C., and Springer, T.A. (2014). Structural determinants of integrin beta-subunit specificity for latent TGF-beta. Nat. Struct. Mol. Biol. 21, 1091-1096. crossref(new window)

19.
Drozdetskiy, A., Cole, C., Procter, J., and Barton, G.J. (2015). JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43, W389-394. crossref(new window)

20.
Galdiero, M., Whiteley, A., Bruun, B., Bell, S., Minson, T., and Browne, H. (1997). Site-directed and linker insertion mutagenesis of herpes simplex virus type 1 glycoprotein H. J. Virol. 71, 2163-2170.

21.
Garcia, N.J., Chen, J., and Longnecker, R. (2013). Modulation of Epstein-Barr virus glycoprotein B (gB) fusion activity by the gB cytoplasmic tail domain. MBio 4, e00571-00512.

22.
Gompels, U.A., Carss, A.L., Saxby, C., Hancock, D.C., Forrester, A., and Minson, A.C. (1991). Characterization and sequence analyses of antibody-selected antigenic variants of herpes simplex virus show a conformationally complex epitope on glycoprotein H. J. Virol. 65, 2393-2401.

23.
Gong, M., and Kieff, E. (1990). Intracellular trafficking of two major Epstein-Barr virus glycoproteins, gp350/220 and gp110. J. Virol. 64, 1507-1516.

24.
Haan, K.M., Lee, S.K., and Longnecker, R. (2001). Different functional domains in the cytoplasmic tail of glycoprotein B are involved in Epstein-Barr virus-induced membrane fusion. Virology 290, 106-114. crossref(new window)

25.
Harman, A., Browne, H., and Minson, T. (2002). The transmembrane domain and cytoplasmic tail of herpes simplex virus type 1 glycoprotein H play a role in membrane fusion. J. Virol. 76, 10708-10716. crossref(new window)

26.
Heldwein, E.E., Lou, H., Bender, F.C., Cohen, G.H., Eisenberg, R.J., and Harrison, S.C. (2006). Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313, 217-220. crossref(new window)

27.
Hutt-Fletcher, L.M., and Chesnokova, L.S. (2010). Integrins as triggers of Epstein-Barr virus fusion and epithelial cell infection. Virulence 1, 395-398. crossref(new window)

28.
Janz, A., Oezel, M., Kurzeder, C., Mautner, J., Pich, D., Kost, M., Hammerschmidt, W., and Delecluse, H.J. (2000). Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J. Virol. 74, 10142-10152. crossref(new window)

29.
Jasirwan, C., Furusawa, Y., Tang, H., Maeki, T., and Mori, Y. (2014). Human herpesvirus-6A gQ1 and gQ2 are critical for human CD46 usage. Microbiol. Immunol. 58, 22-30. crossref(new window)

30.
Kirschner, A.N., Lowrey, A.S., Longnecker, R., and Jardetzky, T.S. (2007). Binding-site interactions between Epstein-Barr virus fusion proteins gp42 and gH/gL reveal a peptide that inhibits both epithelial and B-cell membrane fusion. J. Virol. 81, 9216-9229. crossref(new window)

31.
Kirschner, A.N., Sorem, J., Longnecker, R., and Jardetzky, T.S. (2009). Structure of Epstein-Barr virus glycoprotein 42 suggests a mechanism for triggering receptor-activated virus entry. Structure 17, 223-233. crossref(new window)

32.
Langeland, N., Oyan, A.M., Marsden, H.S., Cross, A., Glorioso, J.C., Moore, L.J., and Haarr, L. (1990). Localization on the herpes simplex virus type 1 genome of a region encoding proteins involved in adsorption to the cellular receptor. J. Virol. 64, 1271-1277.

33.
Lee, S.K., and Longnecker, R. (1997). The Epstein-Barr virus glycoprotein 110 carboxy-terminal tail domain is essential for lytic virus replication. J. Virol. 71, 4092-4097.

34.
Liu, F., Marquardt, G., Kirschner, A.N., Longnecker, R., and Jardetzky, T.S. (2010). Mapping the N-terminal residues of Epstein-Barr virus gp42 that bind gH/gL by using fluorescence polarization and cell-based fusion assays. J. Virol. 84, 10375-10385. crossref(new window)

35.
Longnecker, R., Kieff, E., and Cohen, J. (2013). Epstein-Barr virus, 6th eds. (Philadelphia, PA, Lippincott, Wilkins, and Williams).

36.
Matsuura, H., Kirschner, A.N., Longnecker, R., and Jardetzky, T.S. (2010). Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proc. Natl. Acad. Sci. USA 107, 22641-22646. crossref(new window)

37.
Miller, N., and Hutt-Fletcher, L.M. (1992). Epstein-Barr virus enters B cells and epithelial cells by different routes. J. Virol. 66, 3409-3414.

38.
Mohl, B.S., Sathiyamoorthy, K., Jardetzky, T.S., and Longnecker, R. (2014). The conserved disulfide bond within domain II (D-II) of Epstein-Barr virus (EBV) gH has divergent roles in membrane fusion with epithelial cells and B cells. J. Virol. 88, 13570-13579. crossref(new window)

39.
Mohl, B.S., Schroter, C., Klupp, B.G., Fuchs, W., Mettenleiter, T.C., Jardetzky, T.S., and Longnecker, R. (2015). Comparative mutagenesis of Pseudorabies and Epstein-Barr virus gH identifies a structural determinant within domain III of gH required for surface expression and entry function. J. Virol. 90, 2285-2293.

40.
Mori, Y. (2009). Recent topics related to human herpesvirus 6 cell tropism. Cell Microbiol. 11, 1001-1006. crossref(new window)

41.
Mullen, M.M., Haan, K.M., Longnecker, R., and Jardetzky, T.S. (2002). Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol. Cell 9, 375-385. crossref(new window)

42.
Nemerow, G.R., and Cooper, N.R. (1984). Early events in the infection of human B lymphocytes by Epstein-Barr virus: the internalization process. Virology 132, 186-198. crossref(new window)

43.
Ogembo, J.G., Kannan, L., Ghiran, I., Nicholson-Weller, A., Finberg, R.W., Tsokos, G.C., and Fingeroth, J.D. (2013). Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 3, 371-385. crossref(new window)

44.
Omerovic, J., and Longnecker, R. (2007). Functional homology of gHs and gLs from EBV-related gamma-herpesviruses for EBV-induced membrane fusion. Virology 365, 157-165. crossref(new window)

45.
Omerovic, J., Lev, L., and Longnecker, R. (2005). The amino terminus of Epstein-Barr virus glycoprotein gH is important for fusion with epithelial and B cells. J. Virol. 79, 12408-12415. crossref(new window)

46.
Plate, A.E., Smajlovic, J., Jardetzky, T.S., and Longnecker, R. (2009). Functional analysis of glycoprotein L (gL) from rhesus lymphocryptovirus in Epstein-Barr virus-mediated cell fusion indicates a direct role of gL in gB-induced membrane fusion. J. Virol. 83, 7678-7689. crossref(new window)

47.
Plate, A.E., Reimer, J.J., Jardetzky, T.S., and Longnecker, R. (2011). Mapping regions of Epstein-Barr virus (EBV) glycoprotein B (gB) important for fusion function with gH/gL. Virology 413, 26-38. crossref(new window)

48.
Revello, M.G., and Gerna, G. (2010). Human cytomegalovirus tropism for endothelial/epithelial cells: scientific background and clinical implications. Rev. Med. Virol. 20, 136-155. crossref(new window)

49.
Roche, S., Bressanelli, S., Rey, F.A., and Gaudin, Y. (2006). Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 313, 187-191. crossref(new window)

50.
Rogalin, H.B., and Heldwein, E.E. (2015). Interplay between the herpes simplex virus 1 gB cytodomain and the gH cytotail during cell-cell fusion. J. Virol. 89, 12262-12272. crossref(new window)

51.
Sathiyamoorthy, K., Jiang, J., Hu, Y.X., Rowe, C.L., Möhl, B.S., Chen, J., Jiang, W., Mellins, E.D., Longnecker, R., Zhou, Z.H., et al. (2014). Assembly and architecture of the EBV B cell entry triggering complex. PLoS Pathog. 10, e1004309. crossref(new window)

52.
Schroter, C., Klupp, B.G., Fuchs, W., Gerhard, M., Backovic, M., Rey, F.A., and Mettenleiter, T.C. (2014). The highly conserved proline at position 438 in Pseudorabies Virus gH is important for regulation of membrane fusion. J. Virol. 88, 13064-13072. crossref(new window)

53.
Silva, A.L., Omerovic, J., Jardetzky, T.S., and Longnecker, R. (2004). Mutational analyses of Epstein-Barr virus glycoprotein 42 reveal functional domains not involved in receptor binding but required for membrane fusion. J. Virol. 78, 5946-5956. crossref(new window)

54.
Silverman, J.L., Greene, N.G., King, D.S., and Heldwein, E.E. (2012). Membrane requirement for folding of the herpes simplex virus 1 gB cytodomain suggests a unique mechanism of fusion regulation. J. Virol. 86, 8171-8184. crossref(new window)

55.
Spear, P.G., and Longnecker, R. (2003). Herpesvirus entry: an update. J. Virol. 77, 10179-10185. crossref(new window)

56.
Stampfer, S.D., and Heldwein, E.E. (2012). Stuck in the middle: structural insights into the role of the gH/gL heterodimer in herpesvirus entry. Curr. Opin. Virol. 3, 13-19.

57.
Steven, A.C., and Spear, P.G. (2006). Biochemistry. Viral glycoproteins and an evolutionary conundrum. Science 313, 177-178. crossref(new window)

58.
Tang, H., Wang, J., Mahmoud, N.F., and Mori, Y. (2014). Detailed study of the interaction between human herpesvirus 6B glycoprotein complex and its cellular receptor, human CD134. J. Virol. 88, 10875-10882. crossref(new window)

59.
Tugizov, S.M., Berline, J.W., and Palefsky, J.M. (2003). Epstein- Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat. Med. 9, 307-314. crossref(new window)

60.
Wang, X., Kenyon, W.J., Li, Q., Mullberg, J., and Hutt-Fletcher, L.M. (1998). Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J. Virol. 72, 5552-5558.

61.
Waning, D.L., Russell, C.J., Jardetzky, T.S., and Lamb, R.A. (2004). Activation of a paramyxovirus fusion protein is modulated by inside-out signaling from the cytoplasmic tail. Proc. Natl. Acad. Sci. USA 101, 9217-9222. crossref(new window)

62.
Wu, L., Borza, C.M., and Hutt-Fletcher, L.M. (2005). Mutations of Epstein-Barr virus gH that are differentially able to support fusion with B cells or epithelial cells. J. Virol. 79, 10923-10930. crossref(new window)

63.
Xing, Y., Oliver, S.L., Nguyen, T., Ciferri, C., Nandi, A., Hickman, J., Giovani, C., Yang, E., Palladino, G., Grose, C., et al. (2015). A site of varicella-zoster virus vulnerability identified by structural studies of neutralizing antibodies bound to the glycoprotein complex gHgL. Proc. Natl. Acad. Sci. USA 112, 6056-6061. crossref(new window)

64.
Yang, E., Arvin, A.M., and Oliver, S.L. (2014). The cytoplasmic domain of varicella-zoster virus glycoprotein H regulates syncytia formation and skin pathogenesis. PLoS Pathog. 10, e1004173. crossref(new window)

65.
Zago, A., Connolly, S.A., Spear, P.G., and Longnecker, R. (2012). The fusion loops and membrane proximal region of Epstein-Barr virus glycoprotein B (gB) can function in the context of herpes simplex virus 1 gB when substituted individually but not in combination. Virus Res. 171, 227-230.

66.
Zhou, M., Lanchy, J.M., and Ryckman, B.J. (2015). Human cytomegalovirus gH/gL/gO promotes the fusion step of entry into all cell types, whereas gH/gL/UL128-131 broadens virus tropism through a distinct mechanism. J. Virol. 89, 8999-9009. crossref(new window)