JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 4,  2016, pp.292-298
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2223
 Title & Authors
Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c
Jiang, Yong; Liu, He; Liu, Wen-jing; Tong, Hai-bin; Chen, Chang-jun; Lin, Fu-gui; Zhuo, Yan-hang; Qian, Xiao-zhen; Wang, Zeng-bin; Wang, Yu; Zhang, Peng; Jia, Hong-liang;
  PDF(new window)
 Abstract
Aquaporin 1 (AQP1) is expressed in most microvasculature endothelial cells and forms water channels that play major roles in a variety of physiologic processes. This study aimed to delineate the transcriptional regulation of AQP1 by Mef2c in endothelial cells. Mef2c cooperated with Sp1 to activate human AQP1 transcription by binding to its proximal promoter in human umbilical cord vein endothelial cells (HUVEC). Over-expression of Mef2c, Sp1, or Mef2c/Sp1 increased HUVEC migration and tube-forming ability, which can be abolished AQP1 knockdown. These data indicate that AQP1 is a direct target of Mef2c in regulating angiogenesis and vasculogenesis of endothelial cells.
 Keywords
angiogenesis;AQP1;Mef2c;migration;vascular tube formation;
 Language
English
 Cited by
1.
Overexpression of a Barley Aquaporin Gene, HvPIP2;5 Confers Salt and Osmotic Stress Tolerance in Yeast and Plants, Frontiers in Plant Science, 2016, 7  crossref(new windwow)
 References
1.
Abreu-Rodriguez, I., Sanchez Silva, R., Martins, A.P., Soveral, G., Toledo-Aral, J.J., Lopez-Barneo, J., and Echevarria, M. (2011). Functional and transcriptional induction of aquaporin-1 gene by hypoxia; analysis of promoter and role of Hif-1alpha. PLoS One 6, e28385. crossref(new window)

2.
Au, C.G., Cooper, S.T., Lo, H.P., Compton, A.G., Yang, N., Wintour, E.M., North, K.N., and Winlaw, D.S. (2004). Expression of aquaporin 1 in human cardiac and skeletal muscle. J. Mol. Cell Cardiol. 36, 655-662. crossref(new window)

3.
Bi, W., Drake, C.J., and Schwarz, J.J. (1999). The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev. Biol. 211, 255-267. crossref(new window)

4.
Bondy, C., Chin, E., Smith, B.L., Preston, G.M., and Agre, P. (1993). Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc. Natl. Acad. Sci. USA 90, 4500-4504. crossref(new window)

5.
Esteva-Font, C., Jin, B.J., and Verkman, A.S. (2014). Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice. FASEB J. 28, 1446-1453. crossref(new window)

6.
Flavell, S.W., Kim, T.K., Gray, J.M., Harmin, D.A., Hemberg, M., Hong, E.J., Markenscoff-Papadimitriou, E., Bear, D.M., and Greenberg, M.E. (2008). Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022-1038. crossref(new window)

7.
Gao, C., Tang, J., Li, R., and Huan, J. (2012). Specific inhibition of AQP1 water channels in human pulmonary microvascular endothelial cells by small interfering RNAs. J. Trauma Acute Care Surg. 72, 150-161. crossref(new window)

8.
Hara-Chikuma, M., and Verkman, A.S. (2006). Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule. J. Am. Soc. Nephrol. 17, 39-45.

9.
Hara-Chikuma, M., and Verkman, A.S. (2008). Roles of aquaporin-3 in the epidermis. J. Invest Dermatol. 128, 2145-2151. crossref(new window)

10.
Hosking, B.M., Wang, S.C., Chen, S.L., Penning, S., Koopman, P., and Muscat, G.E. (2001). SOX18 directly interacts with MEF2C in endothelial cells. Biochem. Biophys. Res. Commun. 287, 493-500. crossref(new window)

11.
Kalsotra, A., Singh, R.K., Gurha, P., Ward, A.J., Creighton, C.J., and Cooper, T.A. (2014). The Mef2 transcription network is disrupted in myotonic dystrophy heart tissue, dramatically altering miRNA and mRNA expression. Cell Rep. 6, 336-345. crossref(new window)

12.
Kim, J., and Jung, Y. (2011). Different expressions of AQP1, AQP4, eNOS, and VEGF proteins in ischemic versus non-ischemic cerebropathy in rats: potential roles of AQP1 and eNOS in hydrocephalic and vasogenic edema formation. Anat. Cell Biol. 44, 295-303. crossref(new window)

13.
Lin, Q., Lu, J., Yanagisawa, H., Webb, R., Lyons, G.E., Richardson, J.A., and Olson, E.N. (1998). Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125, 4565-4574.

14.
Maiti, D., Xu, Z., and Duh, E.J. (2008). Vascular endothelial growth factor induces MEF2C and MEF2-dependent activity in endothelial cells. Invest Ophthalmol. Vis. Sci. 49, 3640-3648. crossref(new window)

15.
Molkentin, J.D., and Olson, E.N. (1996). Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. USA 93, 9366-9373. crossref(new window)

16.
Papadopoulos, M.C., and Verkman, A.S. (2013). Aquaporin water channels in the nervous system. Nat. Rev. Neurosci. 14, 265-277. crossref(new window)

17.
Potthoff, M.J., and Olson, E.N. (2007). MEF2: a central regulator of diverse developmental programs. Development 134, 4131-4140. crossref(new window)

18.
Preston, G.M., and Agre, P. (1991). Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl. Acad. Sci. USA 88, 11110-11114. crossref(new window)

19.
Rutkovskiy, A., Bliksoen, M., Hillestad, V., Amin, M., Czibik, G., Valen, G., Vaage, J., Amiry-Moghaddam, M., and Stenslokken, K.O. (2013). Aquaporin-1 in cardiac endothelial cells is downregulated in ischemia, hypoxia and cardioplegia. J. Mol. Cell Cardiol. 56, 22-33. crossref(new window)

20.
Saadoun, S., Papadopoulos, M.C., Hara-Chikuma, M., and Verkman, A.S. (2005). Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434, 786-792. crossref(new window)

21.
Schwieger, M., Schuler, A., Forster, M., Engelmann, A., Arnold, M.A., Delwel, R., Valk, P.J., Lohler, J., Slany, R.K., Olson, E.N., et al. (2009). Homing and invasiveness of MLL/ENL leukemic cells is regulated by MEF2C. Blood 114, 2476-2488. crossref(new window)

22.
Shang, Y., Doan, C.N., Arnold, T.D., Lee, S., Tang, A.A., Reichardt, L.F., and Huang, E.J. (2013). Transcriptional corepressors HIPK1 and HIPK2 control angiogenesis via TGF-beta-TAK1- dependent mechanism. PLoS Biol. 11, e1001527. crossref(new window)

23.
Stigliano, C., Aryal, S., de Tullio, M.D., Nicchia, G.P., Pascazio, G., Svelto, M., and Decuzzi, P. (2013). siRNA-chitosan complexes in poly(lactic-co-glycolic acid) nanoparticles for the silencing of aquaporin-1 in cancer cells. Mol. Pharm. 10, 3186-3194. crossref(new window)

24.
Tradtrantip, L., Tajima, M., Li, L., and Verkman, A.S. (2009). Aquaporin water channels in transepithelial fluid transport. J. Med. Invest 56, 179-184. crossref(new window)

25.
Verkman, A.S. (2008). Dissecting the roles of aquaporins in renal pathophysiology using transgenic mice. Semin. Nephrol. 28, 217-226. crossref(new window)

26.
Verkman, A.S., and Mitra, A.K. (2000). Structure and function of aquaporin water channels. Am J. Physiol. Renal. Physiol. 278, F13-28.

27.
Verkman, A.S., Ratelade, J., Rossi, A., Zhang, H., and Tradtrantip, L. (2011). Aquaporin-4: orthogonal array assembly, CNS functions, and role in neuromyelitis optica. Acta Pharmacol. Sin. 32, 702-710. crossref(new window)

28.
Verkman, A.S., Anderson, M.O., and Papadopoulos, M.C. (2014). Aquaporins: important but elusive drug targets. Nat. Rev. Drug Discov. 13, 259-277. crossref(new window)

29.
Xiao, J., Zhou, Y., Lai, H., Lei, S., Chi, L.H., and Mo, X. (2013). Transcription factor NF-Y is a functional regulator of the transcription of core clock gene Bmal1. J. Biol. Chem. 288, 31930-31936. crossref(new window)

30.
Xu, Z., Gong, J., Maiti, D., Vong, L., Wu, L., Schwarz, J.J., and Duh, E.J. (2012). MEF2C ablation in endothelial cells reduces retinal vessel loss and suppresses pathologic retinal neovascularization in oxygen-induced retinopathy. Am. J. Pathol. 180, 2548-2560. crossref(new window)