JOURNAL BROWSE
Search
Advanced SearchSearch Tips
miR-30a Regulates the Expression of CAGE and p53 and Regulates the Response to Anti-Cancer Drugs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 4,  2016, pp.299-309
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2242
 Title & Authors
miR-30a Regulates the Expression of CAGE and p53 and Regulates the Response to Anti-Cancer Drugs
Park, Deokbum; Kim, Hyuna; Kim, Youngmi; Jeoung, Dooil;
  PDF(new window)
 Abstract
We have previously reported the role of miR-217 in anti-cancer drug-resistance. miRNA array and miRNA hybridization analysis predicted miR-30a-3p as a target of miR-217. miR-30a-3p and miR-217 formed a negative feedback loop and regulated the expression of each other. Ago1 immunoprecipitation and co-localization analysis revealed a possible interaction between miR-30a-3p and miR-217. miR-30a-3p conferred resistance to anti-cancer drugs and enhanced the invasion, migration, angiogenic, tumorigenic, and metastatic potential of cancer cells in CAGE-dependent manner. CAGE increased the expression of miR-30a-3p by binding to the promoter sequences of miR-30a-3p, suggesting a positive feedback loop between CAGE and miR-30a-3p. miR-30a-3p decreased the expression of p53, which showed the binding to the promoter sequences of miR-30a-3p and CAGE in anti-cancer drug-sensitive cancer cells. Luciferase activity assays showed that p53 serves as a target of miR-30a. Thus, the miR-30a-3p-CAGE-p53 feedback loop serves as a target for overcoming resistance to anti-cancer drugs.
 Keywords
anti-cancer drug-resistance;CAGE;feedback loop;miR-30a;p53;
 Language
English
 Cited by
1.
A cancer/testis antigen, NY-SAR-35, induces EpCAM, CD44, and CD133, and activates ERK in HEK293 cells, Biochemical and Biophysical Research Communications, 2017, 484, 2, 298  crossref(new windwow)
2.
Identification of epigenetic interactions between miRNA and DNA methylation associated with gene expression as potential prognostic markers in bladder cancer, BMC Medical Genomics, 2017, 10, S1  crossref(new windwow)
3.
Titanium dioxide aggregating nanoparticles induce autophagy and under-expression of microRNA 21 and 30a in A549 cell line: A comparative study with cobalt(II, III) oxide nanoparticles, Toxicology in Vitro, 2017, 42, 76  crossref(new windwow)
 References
1.
Bojmar, L., Karlsson, E., Ellegard, S., Olsson, H., Bjornsson, B., Hallbook, O., Larsson, M., Stal, O., and Sandstrom, P. (2013). The role of microRNA-200 in progression of human colorectal and breast cancer. PLoS One 8, e84815. crossref(new window)

2.
Chaudhary, P., Thamake, S.I., Shetty, P., and Vishwanatha, J.K. (2014). Inhibition of triple-negative and Herceptin-resistant breast cancer cell proliferation and migration by Annexin A2 antibodies. Br. J. Cancer 111, 2328-2341. crossref(new window)

3.
Chen, Z., Ma, T., Huang, C., Zhang, L., Lv, X., Xu, T., Hu, T., and Li, J. (2013). miR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/$\beta$-catenin pathway in hepatocellular carcinoma cells. Cell. Signal. 25, 2693-2701. crossref(new window)

4.
Chen, W., Yang, Y., Chen, B., Lu, P., Zhan, L., Yu, Q., Cao, K., and Li, Q. (2014a). MiR-136 targets E2F1 to reverse cisplatin chemosensitivity in glioma cells. J. Neurooncol. 120, 43-53. crossref(new window)

5.
Chen, W.X., Liu, X.M., Lv. M.M., Chen, L., Zhao, J.H., Zhong, S.L., Ji, M.H., Hu, Q., Luo, Z., Wu, J.Z., et al. (2014b). Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 9, e95240. crossref(new window)

6.
Cheng, W., Liu, T., Wan, X., Gao, Y., and Wang, H. (2012). MicroRNA- 199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 279, 2047-2059. crossref(new window)

7.
Cho, B., Lim, Y., Lee, D.Y., Park, S.Y., Lee, H., Kim, W.H., Yang, H., Bang, Y.J., and Jeoung, D.I. (2002). Identification and characterization of a novel cancer/testis antigen gene CAGE. Biochem. Biophys. Res. Commun. 292, 715-726. crossref(new window)

8.
Cho, B., Lee, H., Jeong, S., Bang, Y.J., Lee, H.J., Hwang, K.S., Kim, H.Y., Lee, Y.S., Kang, G.H., and Jeoung, D.I. (2003). Promoter hypomethylation of a novel cancer/testis antigen gene CAGE is correlated with its aberrant expression and is seen in premalignant stage of gastric carcinoma. Biochem. Biophys. Res. Commun. 307, 52-63. crossref(new window)

9.
Fu, J., Xu, X., Kang, L., Zhou, L., Wang, S., Lu, J., Cheng, L., Fan, Z., Yuan, B., Tian, P., et al. (2014). miR-30a suppresses breast cancer cell proliferation and migration by targeting Eya2. Biochem. Biophys. Res. Commun. 445, 314-319. crossref(new window)

10.
Guo, J., Feng, Z., Huang, Z., Wang, H., and Lu, W. (2014). Micro RNA-217 functions as a tumor suppressor gene and correlates with cell resistance to cisplatin in lung cancer. Mol. Cells 37, 664-671. crossref(new window)

11.
Iwata, T., Fujita, T., Hirao, N., Matsuzaki, Y., Okada, T., Mochimaru, H., Susumu, N., Matsumoto, E., Sugano, K., Yamashita, N., et al. (2005). Frequent immune responses to a cancer/testis antigen, CAGE, in patients with microsatellite instability-positive endometrial cancer. Clin. Cancer Res. 11, 3949-3957. crossref(new window)

12.
Jia, Z., Wang, K., Wang, G., Zhang, A., and Pu, P. (2013). MiR- 30a-5p antisense oligonucleotide suppresses glioma cell growth by targeting SEPT7. PLoS One 8, e55008. crossref(new window)

13.
Kim, Y., Park, H., Park, D., Lee, Y.S., Choe, J., Hahn, J.H., Lee, H., Kim, Y.M., and Jeoung, D. (2010). Cancer/testis antigen CAGE exerts negative regulation on p53 expression through HDAC2 and confers resistance to anti-cancer drugs. J. Biol. Chem. 285, 25957-25968. crossref(new window)

14.
Kim, Y., Park, D., Kim, H., Choi, M., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung, D. (2013). miR-200b and cancer/testis antigen CAGE form a feedback loop to regulate the invasion and tumorigenic and angiogenic responses of a cancer cell line to microtubule- targeting drugs. J. Biol. Chem. 288, 36502-36518. crossref(new window)

15.
Kim, Y., Kim, H., Park, H., Park, D., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung, D. (2014). miR-326-histone deacetylase-3 feedback loop regulates the invasion and tumorigenic and angiogenic response to anti-cancer drugs. J. Biol. Chem. 289, 28019-28039. crossref(new window)

16.
Lee, K.M., Nam, K., Oh, S., Lim, J., Kim, Y.P., Lee, J.W., Yu, J.H., Ahn, S.H., Kim, S.B., Noh, D.Y., et al. (2014). Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor signaling. Breast Cancer Res. 16, 479. crossref(new window)

17.
Liggins, A.P., Lim, S.H., Soilleux, E.J., Pulford, K., and Banham, A. H. (2010). A panel of cancer-testis genes exhibiting broadspectrum expression in haematological malignancies. Cancer Immun. 10, 8.

18.
Liu, Z., Chen, L., Zhang, X., Xu, X., Xing, H., Zhang, Y., Li, W., Yu, H., Zeng, J., and Jia, J. (2014). RUNX3 regulates vimentin expression via miR-30a during epithelial-mesenchymal transition in gastric cancer cells. J. Cell. Mol. Med. 18, 610-623. crossref(new window)

19.
Mao, C., Zhang, J., Lin, S., Jing, L., Xiang, J., Wang, M., Wang, B., Xu, P., Liu, W., Song, X., et al. (2014). MiRNA-30a inhibits AECs- II apoptosis by blocking mitochondrial fission dependent on Drp-1. J. Cell. Mol. Med. 18, 2404-2416. crossref(new window)

20.
Mathew, L.K., Lee, S.S., Skuli, N., Rao, S., Keith, B., Nathanson, K.L., Lal, P., Simon, M.C. (2014). Restricted expression of miR- 30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances $HIF2{\alpha}$ activity. Cancer Discov. 4, 53-60. crossref(new window)

21.
Nishioka, C., Ikezoe, T., Yang, J., Nobumoto, A., Tsuda, M., and Yokoyama, A. (2014). Downregulation of miR-217 correlates with resistance of Ph (+). leukemia cells to ABL tyrosine kinase inhibitors. Cancer Sci. 105, 297-307. crossref(new window)

22.
Perez-Rivas, L.G., Jerez, J.M., Carmona, R., de Luque, V., Vicioso, L., Claros, M.G., Viguera, E., Pajares, B., Sanchez, A., Ribelles, N., et al. (2014). A microRNA signature associated with early recurrence in breast cancer. PLoS One 9, e91884. crossref(new window)

23.
Por, E., Byun, H.J., Lee, E.J., Lim, J.H., Jung, S.Y., Park, I., Kim, Y.M., Jeoung, D.I., and Lee, H. (2010). The cancer/testis antigen CAGE with oncogenic potential stimulates cell proliferation by upregulating cyclins D1 and E in an AP-1- and E2F-dependent manner. J. Biol. Chem. 285, 14475-14485. crossref(new window)

24.
Rexer, B.N., Ghosh, R., Narasanna, A., Estrada, M.V., Chakrabarty, A., Song, Y., Engelman, J.A., and Arteaga, C.L. (2013). Human breast cancer cells harboring a gatekeeper T798M mutation in HER2 overexpress EGFR ligands and are sensitive to dual inhibition of EGFR and HER2. Clin. Cancer Res 19, 5390-5401. crossref(new window)

25.
Song, S.J., Ito, K., Ala, U., Kats, L., Webster, K., Sun, S.M., Jongen-Lavrencic, M., Manova-Todorova, K., Teruya-Feldstein, J., Avigan, D.E., et al. (2013). The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 13, 87-101. crossref(new window)

26.
Wang, W., Lin, H., Zhou, L., Zhu, Q., Gao, S., Xie, H., Liu, Z., Xu, Z., Wei, J., Huang, X., et al. (2013). MicroRNA-30a-3p inhibits tumor proliferation, invasiveness and metastasis and is downregulated in hepatocellular carcinoma. Eur. J. Surg. Oncol. 40, 1586-1594.

27.
Wang, H.Y., Li, Y.Y., Fu, S., Wang, X.P., Huang, M.Y., Zhang, X., Shao, Q., Deng, L., Zeng, M.S., Zeng, Y.X., et al. (2014). MicroRNA- 30a promotes invasiveness and metastasis in vitro and in vivo through epithelial-mesenchymal transition and results in poor survival of nasopharyngeal carcinoma patients. Exp. Biol. Med. (Maywood). 239, 891-898. crossref(new window)

28.
Wu, Z.B., Li, W.Q., Lin, S.J., Wang, C.D., Cai, L., Lu, J.L., Chen, Y.X., Su, Z.P., Shang, H.B., Yang, W.L., et al. (2014). MicroRNA expression profile of bromocriptine-resistant prolactinomas. Mol. Cell. Endocrinol. 395, 10-18. crossref(new window)