Advanced SearchSearch Tips
Gustatory Receptors Required for Avoiding the Toxic Compound Coumarin in Drosophila melanogaster
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 4,  2016, pp.310-315
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2250
 Title & Authors
Gustatory Receptors Required for Avoiding the Toxic Compound Coumarin in Drosophila melanogaster
Poudel, Seeta; Lee, Youngseok;
  PDF(new window)
Coumarin is a phenolic compound that mainly affects the liver due to its metabolization into a toxic compound. The deterrent and ovicidal activities of coumarin in insect models such as Drosophila melanogaster have been reported. Here we explore the molecular mechanisms by which these insects protect themselves and their eggs from this toxic plant metabolite. Coumarin was fatal to the flies in a dosage-dependent manner. However, coumarin feeding could be inhibited through activation of the aversive gustatory receptor neurons (GRNs), but not the olfactory receptor neurons. Furthermore, three gustatory receptors, GR33a, GR66a, and GR93a, functioned together in coumarin detection by the proboscis. However, GR33a, but not GR66a and GR93a, was required to avoid coumarin during oviposition, with a choice of the same substrates provided as in binary food choice assay. Taken together, these findings suggest that anti-feeding activity and oviposition to avoid coumarin occur via separate mechanisms.
 Cited by
Gustatory receptor 22e is essential for sensing chloroquine and strychnine in Drosophila melanogaster, Insect Biochemistry and Molecular Biology, 2017, 88, 30  crossref(new windwow)
Taste receptors in the gut – A new target for health promoting properties in diet, Food Research International, 2017, 100, 1  crossref(new windwow)
Chyb, S., Dahanukar, A., Wickens, A., and Carlson, J.R. (2003). Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc. Natl. Acad. Sci. USA 100, 14526-14530. crossref(new window)

Dahanukar, A., Foster, K., and Carlson, J.R. (2001). A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat. Neurosci. 4, 1182-1186. crossref(new window)

Dahanukar, A., Lei, Y.T., Kwon, J.Y., and Carlson, J.R. (2007). Two Gr genes underlie sugar reception in Drosophila. Neuron. 56, 503-516. crossref(new window)

Dolan, L. C., Matulka, R.A., and Burdock, G.A. (2010). Naturally occurring food toxins. Toxins 2, 2289-2332. crossref(new window)

Dunipace, L., Meister, S., McNealy, C., and Amrein, H. (2001). Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr. Biol. 11, 822-835. crossref(new window)

Dweck, H.K., Ebrahim, S.A., Kromann, S., Bown, D., Hillbur, Y., Sachse, S., Hansson, B.S., and Stensmyr, M.C. (2013). Olfactory preference for egg laying on citrus substrates in Drosophila. Curr. Biol. 23, 2472-2480. crossref(new window)

Hiroi, M., Marion-Poll, F., and Tanimura, T. (2002). Differentiated response to sugars among labellar chemosensilla in Drosophila. Zool. Sci. 19, 1009-1018. crossref(new window)

Hiroi, M., Meunier, N., Marion-Poll, F., and Tanimura, T. (2004). Two antagonistic gustatory receptor neurons responding to sweetsalty and bitter taste in Drosophila. J. Neurobiol. 61, 333-342. crossref(new window)

Jiao, Y., Moon, S.J., and Montell, C. (2007). A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc. Natl. Acad. Sci. USA. 104, 14110-14115. crossref(new window)

Jiao, Y., Moon, S.J., Wang, X., Ren, Q., and Montell, C. (2008). Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr. Biol. 18, 1797-1801. crossref(new window)

Joseph, R. M., and Heberlein, U. (2012). Tissue-specific activation of a single gustatory receptor produces opposing behavioral responses in Drosophila. Genetics 192, 521-532. crossref(new window)

Kacsoh, B.Z., Lynch, Z.R., Mortimer, N.T., and Schlenke, T.A. (2013). Fruit flies medicate offspring after seeing parasites. Science. 339, 947-950. crossref(new window)

Lake, B. (1999). Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem. Toxicol. 37, 423-453. crossref(new window)

Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H., and Vosshall, L.B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703-714. crossref(new window)

Lee, Y., Moon, S.J., and Montell, C. (2009). Multiple gustatory receptors required for the caffeine response in Drosophila. Proc. Natl. Acad. Sci. USA 106, 4495-4500. crossref(new window)

Lee, Y., Kim, S.H., and Montell, C. (2010). Avoiding DEET through Insect gustatory receptors. Neuron 67, 555-561. crossref(new window)

Lee, Y., Kang, M.J., Shim, J., Cheong, C.U., Moon, S.J., and Montell, C. (2012). Gustatory receptors required for avoiding the insecticide L-canavanine. J. Neurosci. 32, 1429-1435. crossref(new window)

Lee, Y., and Poudel, S. (2014). Taste sensation in Drosophila melanoganster. Hanyang Med. Rev. 34, 130-136. crossref(new window)

Lee, Y., Moon, S.J., Wang, Y., and Montell, C. (2015). A Dro-sophila gustatory receptor required for strychnine sensation. Chem. Senses 40, 525-533. crossref(new window)

Meunier, N., Marion-Poll, F., Rospars, J. P., and Tanimura, T. (2003). Peripheral coding of bitter taste in Drosophila. J. Neurobiol. 56, 139-152. crossref(new window)

Miyamoto, T., and Amrein, H. (2008). Suppression of male courtship by a Drosophila pheromone receptor. Nat. Neurosci. 11, 874-876. crossref(new window)

Miyamoto, T., Slone, J., Song, X., and Amrein, H. (2012). A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151, 1113-1125. crossref(new window)

Montell, C. (2009). A taste of the Drosophila gustatory receptors. Curr. Opin. Neurobiol. 19, 345-353. crossref(new window)

Moon, S.J., Köttgen, M., Jiao, Y., Xu, H., and Montell, C. (2006). A taste receptor required for the caffeine response in vivo. Curr. Biol. 16, 1812-1817. crossref(new window)

Moon, S.J., Lee, Y., Jiao, Y., and Montell, C. (2009). A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr. Biol. 19, 1623-1627. crossref(new window)

Nakajima, S., and Kawazu, K. (1980). Coumarin and euponin, two inhibitors for insect development from leaves of Eupatorium japonicum. Agr. Biol. Chem. 44, 2893-2899.

Poudel, S., Kim, Y., Kim, Y.T., and Lee, Y. (2015). Gustatory receptors required for sensing umbelliferone in Drosophila melanogaster. Insect Biochem. Mol. 66, 110-118. crossref(new window)

Robertson, H.M., Warr, C.G., and Carlson, J.R. (2003). Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 100, 14537-14542. crossref(new window)

Schwartz, N.U., Zhong, L., Bellemer, A., and Tracey, W.D. (2012). Egg laying decisions in Drosophila are consistent with foraging costs of larval progeny. PLoS One 7, e37910. crossref(new window)

Scott, K., Brady Jr, R., Cravchik, A., Morozov, P., Rzhetsky, A., Zuker, C., and Axel, R. (2001). A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661-673. crossref(new window)

Shim, J., Lee, Y., Jeong, Y.T., Kim, Y., Lee, M.G., Montell, C., and Moon, S.J. (2015). The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat. Commun. 6, 8867. crossref(new window)

Singleton, V.L. (1981). Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv. Food Res. 27, 149-242. crossref(new window)

Smith, M.T., Yager, J.W., Steinmetz, K.L., and Eastmond, D.A. (1989). Peroxidase-dependent metabolism of Benzene's phenolic metabolites and its potential role in Benzene toxicity and carcinogenicity. Environ. Health Persp. 82, 23-29. crossref(new window)

Stocker, R., and Schorderet, M. (1981). Cobalt filling of sensory projections from internal and external mouthparts in Drosophila. Cell Tissue Res. 216, 513-523.

Thorne, N., Chromey, C., Bray, S., and Amrein, H. (2004). Taste perception and coding in Drosophila. Curr. Biol. 14, 1065-1079. crossref(new window)

Ueno, K., Ohta, M., Morita, H., Mikuni, Y., Nakajima, S., Yamamoto, K., and Isono, K. (2001). Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr. Biol. 11, 1451-1455. crossref(new window)

Wang, Z., Singhvi, A., Kong, P., and Scott, K. (2004). Taste representations in the Drosophila brain. Cell 117, 981-991. crossref(new window)

Weiss, L.A., Dahanukar, A., Kwon, J.Y., Banerjee, D., and Carlson, J.R. (2011). The molecular and cellular basis of bitter taste in Drosophila. Neuron 69, 258-272. crossref(new window)

Yang, C.H., Belawat, P., Hafen, E., Jan, L.Y., and Jan, Y.N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319, 1679-1683. crossref(new window)