Advanced SearchSearch Tips
Long Non-Coding RNA CCAT1 Acts as a Competing Endogenous RNA to Regulate Cell Growth and Differentiation in Acute Myeloid Leukemia
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 4,  2016, pp.330-336
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2308
 Title & Authors
Long Non-Coding RNA CCAT1 Acts as a Competing Endogenous RNA to Regulate Cell Growth and Differentiation in Acute Myeloid Leukemia
Chen, Lianxiang; Wang, Wei; Cao, Lixia; Li, Zhijun; Wang, Xing;
  PDF(new window)
Long non-coding RNAs (lncRNAs) are involved in multiple cellular events, as well as in tumorigenesis. Colon cance-rassociated transcript-1 (CCAT1) gene encodes an lncRNA whose over-activation was observed in an expanding list of primary human solid tumors and tumor cell lines, however its biological roles in acute myeloid leukaemia (AML) has not been reported yet at present. In this study, the aberrant upregulation of CCAT1 was detected in French-American-British M4 and M5 subtypes of adult AML patients. By gain- and loss-of-function analysis, we determined that CCAT1 repressed monocytic differentiation and promoted cell growth of HL-60 by sequestering tumor suppressive miR-155. Accordingly, a significant decrease in miR-155 level was detected in AML patients. Reintroduction of miR-155 into HL-60 cells restored monocytic maturation and repressed cell proliferation. Furthermore, CCAT1 could up-regulated c-Myc via its competing endogenous RNA (ceRNA) activity on miR-155. In conclusion, these results revealed new mechanism of lncRNA CCAT1 in AML development, and suggested that the manipulation of CCAT1 expression could serve as a potential strategy in AML therapy.
 Cited by
Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells, Cancers, 2017, 9, 4, 38  crossref(new windwow)
A 4-lncRNA scoring system for prognostication of adult myelodysplastic syndromes, Blood Advances, 2017, 1, 19, 1505  crossref(new windwow)
LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18-4 by acting as a decoy for microRNA-19b-3p, In Vitro Cellular & Developmental Biology - Animal, 2017, 53, 3, 277  crossref(new windwow)
Long non-coding RNA CCAT1/miR-218/ZFX axis modulates the progression of laryngeal squamous cell cancer, Tumor Biology, 2017, 39, 6, 101042831769941  crossref(new windwow)
CCAT1: an oncogenic long noncoding RNA in human cancers, Journal of Cancer Research and Clinical Oncology, 2017, 143, 4, 555  crossref(new windwow)
Long non-coding RNA CCAT1 is overexpressed in oral squamous cell carcinomas and predicts poor prognosis, Biomedical Reports, 2017, 6, 4, 455  crossref(new windwow)
LncRNA CCAT1 modulates the sensitivity of paclitaxel in nasopharynx cancers cells via miR-181a/CPEB2 axis, Cell Cycle, 2017, 16, 8, 795  crossref(new windwow)
Long non-coding RNA CCAT1/miR-148a axis promotes osteosarcoma proliferation and migration through regulating PIK3IP1, Acta Biochimica et Biophysica Sinica, 2017, 49, 6, 503  crossref(new windwow)
Colon cancer associated transcripts in human cancers, Biomedicine & Pharmacotherapy, 2017, 94, 531  crossref(new windwow)
Long non-coding RNAs in leukemia, Current Opinion in Hematology, 2017, 24, 4, 353  crossref(new windwow)
MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts, Blood, 2017, 130, 11, 1290  crossref(new windwow)
Long non-coding RNA GAS5 polymorphism predicts a poor prognosis of acute myeloid leukemia in Chinese patients via affecting hematopoietic reconstitution, Leukemia & Lymphoma, 2017, 58, 8, 1948  crossref(new windwow)
Identification of lncRNA functions in lung cancer based on associated protein-protein interaction modules, Scientific Reports, 2016, 6, 1  crossref(new windwow)
Upregulation of long noncoding RNA zinc finger antisense 1 enhances epithelial–mesenchymal transition in vitro and predicts poor prognosis in glioma, Tumor Biology, 2017, 39, 3, 101042831769502  crossref(new windwow)
Differential expression profile analysis of lncRNA UCA1α regulated mRNAs in bladder cancer, Journal of Cellular Biochemistry, 2017  crossref(new windwow)
Long noncoding RNAs: pivotal regulators in acute myeloid leukemia, Experimental Hematology & Oncology, 2015, 5, 1  crossref(new windwow)
MicroRNAs and their variants in an RNA world: implications for complex interactions and diverse roles in an RNA regulatory network, Briefings in Bioinformatics, 2016, bbw124  crossref(new windwow)
Alaiyan, B., Ilyayev, N., Stojadinovic, A., Izadjoo, M., Roistacher, M., Pavlov, V., Tzivin, V., Halle, D., Pan, H., Trink, B., et al. (2013). Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence. BMC Cancer 13, 196. crossref(new window)

Arancio, W., Pizzolanti, G., Genovese, S.I., Baiamonte, C., and Giordano, C. (2014). Competing endogenous RNA and interactome bioinformatic analyses on human telomerase. Rejuvenation Res. 17, 161-167. crossref(new window)

Calin, G.A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S.E., Iorio, M.V., Visone, R., Sever, N.I., Fabbri, M., et al. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J. Med. 353,1793-1801. crossref(new window)

Deng, L., Yang, S.B., Xu, F.F., and Zhang, J.H. (2015). Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge. J. Exper. Clin. Cancer Res. 34, 18. crossref(new window)

Eis, P.S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M.F., , E., Dahlberg, J.E. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA 102, 3627-3632. crossref(new window)

Fernando, T.R., Rodriguez-Malave, N.I., Waters, E.V., Yan, W., Casero, D., Basso, G., Pigazzi, M., and Rao, D.S. (2015). LncRNA expression discriminates karyotype and predicts survival in BLymphoblastic Leukemia. Mol. Cancer Res.13, 839-851. crossref(new window)

Gerloff, D., Grundler, R., Wurm, A.A., Brauer-Hartmann, D., Katzerke, C., Hartmann, J.U., Madan, V., Muller-Tidow, C., Duyster, J., Tenen, D.G. et al. (2015). NF-${\kappa}B$/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia. Leukemia 29, 535-547. crossref(new window)

Hughes, J.M., Legnini, I., Salvatori, B., Masciarelli, S., Marchioni, M., Fazi, F., Morlando, M., Bozzoni, I., and Fatica, A. (2015). C/ EBPalpha-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget 6, 18534-18544. crossref(new window)

Ichikawa, M., Asai, T., Saito, T., Seo, S., Yamazaki, I., Yamagata, T., Mitani, K., Chiba, S., Ogawa, S., Kurokawa, M., et al. (2004). AML- 1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 10, 299-304. crossref(new window)

Jeziskova, I., Musilova, M., Culen, M., Foltankova, V., Dvorakova, D., Mayer, J., and Racil, Z. (2015). Distribution of mutations in DNMT3A gene and the suitability of mutations in R882 codon for MRD monitoring in patients with AML. Int. J. Hematol. 102, 553-557. crossref(new window)

Johnsson, P., Ackley, A., Vidarsdottir, L., Lui, W.O., Corcoran, M., Grander, D., and Morris, K.V. (2013). A pseudogene longnoncoding- RNA network regulates PTEN transcription and translation in human cells. Nat. Struct. Mol. Biol. 20, 440-446. crossref(new window)

Jongen-Lavrencic, M., Sun, S.M., Dijkstra, M.K., Valk, P.J.M., Lowenberg, B. (2008). MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111, 5078-5085. crossref(new window)

Kallen, A.N., Zhou, X.B., Xu, J., Qiao, C., Ma, J., Yan, L., Lu, L., Liu, C., Yi, J.S., Zhang, H., et al. (2013). The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 52, 101-112. crossref(new window)

Khandelwal, A., Bacolla, A., Vasquez, K.M., and Jain, A. (2015). Long non-coding RNA: A new paradigm for lung cancer. Mol. Carcinog. 54, 1235-1251. crossref(new window)

Kluiver, J., Poppema, S., De Jong, D., Blokzijl, T., Harms, G., Jacobs, S., Kroesen, B.J., and van den Berg, A. (2005). BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243-249. crossref(new window)

Kluiver, J., Haralambieva, E., De Jong, D., Blokzijl, T., Jacobs, S., Kroesen, B.J., Poppema, S., and van den Berg, A. (2006). Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45, 147-153. crossref(new window)

Kumar, M.S., Armenteros-Monterroso, E., East, P., Chakravorty, P., Matthews, N., Winslow, M.M., and Downward, J. (2014). HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature 505, 212-217. crossref(new window)

Mizrahi, I., Mazeh, H., Grinbaum, R., Beglaibter, N., Wilschanski, M., Pavlov, V., Adileh, M., Stojadinovic, A., Avital, I., Gure, A.O., et al. (2015). Colon cancer associated transcript-1 (CCAT1) expression in adenocarcinoma of the stomach. J. Cancer 6, 105-110. crossref(new window)

Palma, C.A., Al Sheikha, D., Lim, T.K., Bryant, A., Vu, T.T., Jayaswal, V., and Ma, D.D. (2014). MicroRNA-155 as an inducer of apoptosis and cell differentiation in acute myeloid leykaemia. Mol. Cancer. 13, 79. crossref(new window)

Peng, W., Si, S., Zhang, Q., Li, C., Zhao, F., Wang, F., Yu, J., and Ma, R. (2015). Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer pro- gression. J. Exp. Clin. Cancer Res. 34, 79. crossref(new window)

Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W.J., and Pandolfi, P.P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033-1038. crossref(new window)

Rokah, O.H., Granot, G., Ovcharenko, A., Modai, S., Pasmanik-Chor, M., Toren, A., Shomron, N., and Shpilberg, O. (2012). Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS One 7, e35501. crossref(new window)

Saadatpour, A., Guo, G., Orkin, S.H., and Yuan, G.C. (2014). Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol. 15, 525. crossref(new window)

Sakurai, M., Kunimoto, H., Watanabe, N., Fukuchi, Y., Yuasa, S., Yamazaki, S., Nishimura, T., Sadahira, K., Fukuda, K., Okano, H., et al. (2014). Impaired hematopoietic differentiation of RUNX1- mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia 28, 2344-2354. crossref(new window)

Sen, R., Ghosal, S., Das, S., Balti, S., and Chakrabarti, J. (2014). Competing endogenous RNA: the key to posttranscriptional regulation. ScientificWorldJournal 2014, 896206.

Song, X., Cao, G., Jing, L., Lin, S., Wang, X., Zhang, J., Wang, M., Liu, W., and Lv, C. (2014). Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J. Cell. Mol. Med. 18, 991-1003. crossref(new window)

Su, R., Lin, H.S., Zhang, X.H., Yin, X.L., Ning, H.M., Liu, B., Zhai, P.F., Gong, J.N., Shen, C., Song, L., et al. (2015). MiR-181 family: regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene 34, 3226-3239. crossref(new window)

Sun, S., Sun, P., Wang, C., and Sun, T. (2014). Downregulation of microRNA-155 accelerates cell growth and invasion by targeting cmyc in human gastric carcinoma cells. Oncol. Rep. 32, 951-956. crossref(new window)

Wang, J., Liu, X., Wu, H., Ni, P., Gu, Z., Qiao, Y., Chen, N., Sun, F., and Fan, Q. (2010). CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38, 5366-5383. crossref(new window)

Wang, Y., Wu, P., Lin, R., Rong, L., Xue, Y., and Fang, Y. (2015). LncRNA NALT interaction with NOTCH1 promoted cell proliferation in pediatric T cell acute lymphoblastic leukemia. Sci. Rep. 5, 13749. crossref(new window)

Xue, H., Hua, L.M., Guo, M., and Luo, J.M. (2014). SHIP1 is targeted by miR-155 in acute myeloid leukemia. Oncol. Rep. 32, 2253-2259. crossref(new window)

Yang, F., Xue, X., Bi, J., Zheng, L., Zhi, K., Gu, Y., and Fang, G. (2013). Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J. Cancer Res. Clin. Oncol. 139, 437-445. crossref(new window)

Ye, N., Wang, B., Quan, Z.F., Cao, S.J., Wen, X.T., Huang, Y., Huang, X.B., Wu, R., Ma, X.P., and Yan, Q.G. (2014). Functional roles of long non-coding RNA in human breast cancer. Asian Pac. J. Cancer Prev. 15, 5993-5997. crossref(new window)

Yokoyama, Y., Wan, X., Shinohara, A., Takahashi, S., Takahashi, Y., Niwa, K., and Tamaya, T. (2000). Expression of PTEN and PTEN pseudogene in endometrial carcinoma. Int. J. Mol. Med. 6, 47-50.

Yu, G., Yao, W., Gumireddy, K., Li, A., Wang, J., Xiao, W., Chen, K., Xiao, H., Li, H., Tang, K., et al. (2014). Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol. Cancer Ther. 13, 3086-3097. crossref(new window)

Yuan, J.H., Yang, F., Wang, F., Ma, J.Z., Guo, Y.J., Tao, Q.F., Liu, F., Pan, W., Wang, T.T., Zhou, C.C., et al. (2014). A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25, 666-681. crossref(new window)

Zhang, H., Chen, Z., Wang, X., Huang, Z., He, Z., and Chen, Y. (2013). Long non-coding RNA: a new player in cancer. J. Hematol. Oncol. 6, 37. crossref(new window)

Zhu, H., Zhou, X., Chang, H., Li, H., Liu, F., Ma, C., and Lu, J. (2015). CCAT1 promotes hepatocellular carcinoma cell proliferation and invasion. Int. J. Clin. Exper. Pathol. 8, 5427-5434.