Advanced SearchSearch Tips
Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 4,  2016, pp.337-344
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2317
 Title & Authors
Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study
Choi, Chunggab; Oh, Seung-Hun; Noh, Jeong-Eun; Jeong, Yong-Woo; Kim, Soonhag; Ko, Jung Jae; Kim, Ok-Joon; Song, Jihwan;
  PDF(new window)
Intravenous administration of mesenchymal stem cells (IV-MSC) protects the ischemic rat brain in a stroke model, but the molecular mechanism underlying its therapeutic effect is unclear. We compared genomic profiles using the mRNA microarray technique in a rodent stroke model. Rats were treated with IV-MSC or saline (sham group) 2 h after transient middle cerebral artery occlusion (MCAo). mRNA microarray was conducted 72 h after MCAo using brain tissue from normal rats (normal group) and the sham and MSC groups. Predicted pathway analysis was performed in differentially expressed genes (DEGs), and functional tests and immunohistochemistry for inflammation-related proteins were performed. We identified 857 DEGs between the sham and normal groups, with the majority of them (88.7%) upregulated in sham group. Predicted pathway analysis revealed that cerebral ischemia activated 10 signaling pathways mainly related to inflammation and cell cycle. IV-MSC attenuated the numbers of dysregulated genes in cerebral ischemia (118 DEGs between the MSC and normal groups). In addition, a total of 218 transcripts were differentially expressed between the MSC and sham groups, and most of them (175/218 DEGs, 80.2%) were downregulated in the MSC group. IV-MSC reduced the number of Iba- cells in the peri-infarct area, reduced the overall infarct size, and improved functional deficits in MCAo rats. In conclusion, transcriptome analysis revealed that IV-MSC attenuated postischemic genomic alterations in the ischemic brain. Amelioration of dysregulated inflammation- and cell cycle-related gene expression in the host brain is one of the molecular mechanisms of IV-MSC therapy for cerebral ischemia.
inflammation;mesenchymal stem cells;microarray;stroke;transcriptome;
 Cited by
Aggarwal, S., and Pittenger, M.F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815-1822. crossref(new window)

Arumugam, T.V., Granger, D.N., and Mattson, M.P. (2005). Stroke and T-cells. Neuromol. Med. 7, 229-242. crossref(new window)

Arumugam, T.V., Tang, S.C., Lathia, J.D., Cheng, A., Mughal, M.R., Chigurupati, S., Magnus, T., Chan, S.L., Jo, D.G., Ouyang, X., et al. (2007). Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc. Natl. Acad. Sci. USA 104, 14104-14109. crossref(new window)

Augello, A., Tasso, R., Negrini, S.M., Cancedda, R., and Pennesi, G. (2007). Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis. Rheum. 56, 1175-1186. crossref(new window)

Bang, O.Y., Lee, J.S., Lee, P.H., and Lee, G. (2005). Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 57, 874-882. crossref(new window)

Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M.D., and Kaveri, S.V. (2007). Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat. Clin. Pract. Rheumatol. 3, 262-272. crossref(new window)

Bernardo, M.E., and Fibbe, W.E. (2013). Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392-402. crossref(new window)

Chang, D.J., Lee, N., Park, I.H., Choi, C., Jeon, I., Kwon, J., Oh, S.H., Shin, D.A., Do, J.T., Lee, D.R., et al. (2013). Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant. 22, 1427-1440. crossref(new window)

Chen, J., Sanberg, P.R., Li, Y., Wang, L., Lu, M., Willing, A.E., Sanchez-Ramos, J., and Chopp, M. (2001). Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32, 2682-2688. crossref(new window)

Deng, Y.B., Ye, W.B., Hu, Z.Z., Yan, Y., Wang, Y., Takon, B.F., Zhou, G.Q., and Zhou, Y.F. (2010). Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurol. Res. 32, 148-156. crossref(new window)

Eggenhofer, E., and Hoogduijn, M.J. (2012). Mesenchymal stem cell-educated macrophages. Transplant Res. 1, 12. crossref(new window)

Eltzschig, H.K., and Eckle, T. (2011). Ischemia and reperfusion-- from mechanism to translation. Nat. Med. 17, 1391-1401. crossref(new window)

Honmou, O., Houkin, K., Matsunaga, T., Niitsu, Y., Ishiai, S., Onodera, R., Waxman, S.G., and Kocsis, J.D. (2011). Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134, 1790-1807. crossref(new window)

Iadecola, C., and Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796-808. crossref(new window)

Ikegame, Y., Yamashita, K., Hayashi, S., Mizuno, H., Tawada, M., You, F., Yamada, K., Tanaka, Y., Egashira, Y., Nakashima, S., et al. (2011). Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13, 675-685. crossref(new window)

Ishikawa, M., Vowinkel, T., Stokes, K.Y., Arumugam, T.V., Yilmaz, G., Nanda, A., and Granger, D.N. (2005). CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/ reperfusion. Circulation 111, 1690-1696. crossref(new window)

Katchanov, J., Harms, C., Gertz, K., Hauck, L., Waeber, C., Hirt, L., Priller, J., von Harsdorf, R., Bruck, W., Hortnagl, H., et al. (2001). Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J. Neurosci. 21, 5045-5053. crossref(new window)

Kim, J.M., Lee, S.T., Chu, K., Jung, K.H., Song, E.C., Kim, S.J., Sinn, D.I., Kim, J.H., Park, D.K., Kang, K.M., et al. (2007). Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res. 1183, 43-50. crossref(new window)

Kim, S.M., Moon, S.H., Lee, Y., Kim, G.J., Chung, H.M., and Choi, Y.S. (2013). Alternative xeno-free biomaterials derived from human umbilical cord for the self-renewal ex-vivo expansion of mesenchymal stem cells. Stem Cells Dev. 22, 3025-3038. crossref(new window)

Komine-Kobayashi, M., Chou, N., Mochizuki, H., Nakao, A., Mizuno, Y., and Urabe, T. (2004). Dual role of Fcgamma receptor in transient focal cerebral ischemia in mice. Stroke 35, 958-963. crossref(new window)

Lee, R.H., Pulin, A.A., Seo, M.J., Kota, D.J., Ylostalo, J., Larson, B.L., Semprun-Prieto, L., Delafontaine, P,. and Prockop, D.J. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54-63. crossref(new window)

Lee, J.S., Hong, J.M., Moon, G.J., Lee, P.H., Ahn, Y.H., and Bang, O.Y. (2010). A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28, 1099-1106. crossref(new window)

Liesz, A., Bauer, A., Hoheisel, J.D., and Veltkamp, R. (2014). Intracerebral interleukin-10 injection modulates post-ischemic neuroinflammation: an experimental microarray study. Neurosci. Lett. 579, 18-23. crossref(new window)

Liu, X., Ye, R., Yan, T., Yu, S.P., Wei, L., Xu, G., Fan, X., Jiang, Y., Stetler, R.A., Liu, G., et al. (2014). Cell based therapies for ischemic stroke: from basic science to bedside. Prog. Neurobiol. 115, 92-115. crossref(new window)

Longa, E.Z., Weinstein, P.R., Carlson, S., and Cummins, R. (1989). Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84-91. crossref(new window)

Lu, A., Tang, Y., Ran, R., Clark, J.F., Aronow, B.J., and Sharp, F.R. (2003). Genomics of the peri-infarction cortex after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 23, 786-810. crossref(new window)

Nemeth, K., Leelahavanichkul, A., Yuen, P.S., Mayer, B., Parmelee, A., Doi, K., Robey, P.G., Leelahavanichkul, K., Koller, B.H., Brown, J.M., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E (2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 15, 42-49. crossref(new window)

Osuga, H., Osuga, S., Wang, F., Fetni, R., Hogan, M.J., Slack, R.S., Hakim, A.M., Ikeda, J.E., and Park, D.S. (2000). Cyclindependent kinases as a therapeutic target for stroke. Proc. Natl. Acad. Sci. USA 97, 10254-10259. crossref(new window)

Ramos-Cejudo, J., Gutierrez-Fernandez, M., Rodriguez-Frutos, B., Exposito Alcaide, M., Sanchez-Cabo, F., Dopazo, A., and Diez- Tejedor, E. (2012). Spatial and temporal gene expression differences in core and peri-infarct areas in experimental stroke: a microarray analysis. PLoS One 7, e52121. crossref(new window)

Rashidian, J., Iyirhiaro, G., Aleyasin, H., Rios, M., Vincent, I., Callaghan, S., Bland, R.J., Slack, R.S., During, M.J., and Park, D.S. (2005). Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proc. Natl. Acad. Sci. USA 102, 14080-14085. crossref(new window)

Rashidian, J., Iyirhiaro, G.O., and Park, D.S. (2007). Cell cycle machinery and stroke. Biochim. Biophys. Acta 1772, 484-493. crossref(new window)

Samuelsson, A., Towers, T.L., and Ravetch, J.V. (2001). Antiinflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291, 484-486. crossref(new window)

Shichita, T., Sugiyama, Y., Ooboshi, H., Sugimori, H., Nakagawa, R., Takada, I., Iwaki, T., Okada, Y., Iida, M., Cua, D.J., et al. (2009). Pivotal role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946-950. crossref(new window)

Slevin, M., Krupinski, J., Kumar, P., Gaffney, J., and Kumar, S. (2005). Gene activation and protein expression following ischaemic stroke: strategies towards neuroprotection. J. Cell. Mol. Med. 9, 85-102. crossref(new window)

Sun, L., Akiyama, K., Zhang, H., Yamaza, T., Hou, Y., Zhao, S., Xu, T., Le, A., and Shi, S. (2009). Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27, 1421-1432. crossref(new window)

Tang, Y., Lu, A., Aronow, B.J., Wagner, K.R., and Sharp, F.R. (2002). Genomic responses of the brain to ischemic stroke, intracerebral haemorrhage, kainate seizures, hypoglycemia, and hypoxia. Eur. J. Neurosci. 15, 1937-1952. crossref(new window)

Vedeler, C., Ulvestad, E., Grundt, I., Conti, G., Nyland, H., Matre, R., and Pleasure, D. (1994). Fc receptor for IgG (FcR) on rat microglia. J. Neuroimmunol. 49, 19-24. crossref(new window)

Walczak, P., Zhang, J., Gilad, A.A., Kedziorek, D.A., Ruiz-Cabello, J., Young, R.G., Pittenger, M.F., van Zijl, P.C., Huang, J., and Bulte, J.W. (2008). Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39, 1569-1574. crossref(new window)

Wang, F., Corbett, D., Osuga, H., Osuga, S., Ikeda, J.E., Slack, R.S., Hogan, M.J., Hakim, A.M., and Park, D.S. (2002). Inhibition of cyclin-dependent kinases improves CA1 neuronal survival and behavioral performance after global ischemia in the rat. J. Cereb. Blood Flow Metab. 22, 171-182. crossref(new window)

Yilmaz, G., Arumugam, T.V., Stokes, K.Y., and Granger, D.N. (2006). Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113, 2105-2112. crossref(new window)

Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106, 1755-1761. crossref(new window)

Zhang, L., Li, Y., Zhang, C., Chopp, M., Gosiewska, A., and Hong, K. (2011). Delayed administration of human umbilical tissuederived cells improved neurological functional recovery in a rodent model of focal ischemia. Stroke 42, 1437-1444. crossref(new window)