Advanced SearchSearch Tips
Let-7c miRNA Inhibits the Proliferation and Migration of Heat-Denatured Dermal Fibroblasts Through Down-Regulating HSP70
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 4,  2016, pp.345-351
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2336
 Title & Authors
Let-7c miRNA Inhibits the Proliferation and Migration of Heat-Denatured Dermal Fibroblasts Through Down-Regulating HSP70
Jiang, Tao; Wang, Xingang; Wu, Weiwei; Zhang, Fan; Wu, Shifeng;
  PDF(new window)
Wound healing is a complex physiological process necessitating the coordinated action of various cell types, signals and microRNAs (miRNAs). However, little is known regarding the role of miRNAs in mediating this process. In the present study, we show that let-7c miRNA is decreased in heat-denatured fibroblasts and that inhibiting let-7c expression leads to the increased proliferation and migration of dermal fibroblasts, whereas the overexpression of let-7c exerts an opposite effect. Further investigation has identified heat shock protein 70 as a direct target of let-7c and has demonstrated that the expression of HSP70 in fibroblasts is negatively correlated with let-7c levels. Moreover, down-regulation of let-7c expression is accompanied by up-regulation of Bcl-2 expression and down-regulation of Bax expression, both of which are the downstream genes of HSP70. Notably, the knockdown of HSP70 by HSP70 siRNA apparently abrogates the stimulatory effect of let-7c inhibitor on heat-denatured fibroblasts proliferation and migration. Overall, we have identified let-7c as a key regulator that inhibits fibroblasts proliferation and migration during wound healing.
dermal fibroblast;heat;HSP70;Let-7c miRNA;
 Cited by
Regulation function of MMP-1 downregulated by siRNA on migration of heat-denatured dermal fibroblasts, Bioengineered, 2017, 1  crossref(new windwow)
Barrientos, S., Stojadinovic, O., Golinko, M.S., Brem, H., and Tomic‐Canic, M. (2008). Growth factors and cytokines in wound healing. Wound Repair Regen. 16, 585-601. crossref(new window)

Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. crossref(new window)

Beere, H.M. (2004). "The stress of dying": the role of heat shock proteins in the regulation of apoptosis. J. Cell Sci. 117, 2641-2651. crossref(new window)

Bjorner, S., Fitzpatrick, P.A., Li, Y., Allred, C., Howell, A., Ringberg, A., Olsson, H., Miller, C.J., Axelson, H., and Landberg, G. (2014). Epithelial and stromal microRNA signatures of columnar cell hyperplasia linking Let-7c to precancerous and cancerous breast cancer cell proliferation. PLoS One 9, e105099. crossref(new window)

Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101, 2999-3004. crossref(new window)

Chen, P.Y., Qin, L., Barnes, C., Charisse, K., Yi, T., Zhang, X., Ali, R., Medina, P.P., Yu, J., Slack, F.J., et al. (2012). FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep. 2, 1684-1696. crossref(new window)

Ciocca, D.R., and Calderwood, S.K. (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10, 86. crossref(new window)

Clayton, A., Turkes, A., Navabi, H., Mason, M.D., and Tabi, Z. (2005). Induction of heat shock proteins in B-cell exosomes. J. Cell Sci. 118, 3631-3638. crossref(new window)

De-quan, L., Xiao-yuan, H., and Xing-hua, Y. (2008). Morphology of human skin fibroblasts after heat injury in vitro. J. Clin. Rehabilitative Tissue Engineering Res. 12, 2056.

Felicetti, F., Errico, M.C., Bottero, L., Segnalini, P., Stoppacciaro, A., Biffoni, M., Felli, N., Mattia, G., Petrini, M., Colombo, M.P., et al. (2008). The promyelocytic leukemia zinc finger-microRNA-221/- 222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res. 68, 2745-2754. crossref(new window)

Hartl, F.U. (1996). Molecular chaperones in cellular protein folding. Nature 381, 571-579. crossref(new window)

Huang, X., Yang, X., Lei, S., Xiao, M., Zhang, M., and Zeng, J. (2001). With the preservation of denatured dermis and autoskin grafting to repair of deeply burned hands. Zhonghua Shao Shang Za Zhi 17, 60-61.

Jego, G., Hazoume, A., Seigneuric, R., and Garrido, C. (2013). Targeting heat shock proteins in cancer. Cancer Lett. 332, 275-285. crossref(new window)

Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., and Slack, F.J. (2005). RAS is regulated by the let-7 microRNA family. Cell 120, 635-647. crossref(new window)

Johnson, C.D., Esquela-Kerscher, A., Stefani, G., Byrom, M., Kelnar, K., Ovcharenko, D., Wilson, M., Wang, X., Shelton, J., and Shingara, J. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67, 7713-7722. crossref(new window)

Kariya, A., Furusawa, Y., Yunoki, T., Kondo, T., and Tabuchi, Y. (2014). A microRNA-27a mimic sensitizes human oral squamous cell carcinoma HSC-4 cells to hyperthermia through downregulation of Hsp110 and Hsp90. Int. J. Mol. Med. 34, 334-340. crossref(new window)

Koba, S., Jinnin, M., Inoue, K., Nakayama, W., Honda, N., Makino, K., Kajihara, I., Makino, T., Fukushima, S., and Ihn, H. (2013). Expression analysis of multiple microRNAs in each patient with scleroderma. Exp. Dermatol. 22, 489-491. crossref(new window)

Li, D., Wang, A., Liu, X., Meisgen, F., Grunler, J., Botusan, I.R., Narayanan, S., Erikci, E., Li, X., Blomqvist, L., et al. (2015). MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. J. Clin. Invest 125, 3008-3026. crossref(new window)

Liang, P., Lv, C., Jiang, B., Long, X., Zhang, P., Zhang, M., Xie, T., and Huang, X. (2012). MicroRNA profiling in denatured dermis of deep burn patients. Burns 38, 534-540. crossref(new window)

Martin, P. (1997). Wound healing--aiming for perfect skin regeneration. Science 276, 75-81. crossref(new window)

Motoyama, K., Inoue, H., Nakamura, Y., Uetake, H., Sugihara, K., and Mori, M. (2008). Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin. Cancer Res. 14, 2334-2340. crossref(new window)

Nadiminty, N., Tummala, R., Lou, W., Zhu, Y., Zhang, J., Chen, X., eVere White, R.W., Kung, H.J., Evans, C.P., and Gao, A.C. (2012). MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J. Biol. Chem. 287, 1527-1537. crossref(new window)

Nardai, G., Vegh, E.M., Prohaszka, Z., and Csermely, P. (2006). Chaperone-related immune dysfunction: an emergent property of distorted chaperone networks. Trends Immunol. 27, 74-79. crossref(new window)

Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B., Muller, P., et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89. crossref(new window)

Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906. crossref(new window)

Reinke, J.M., and Sorg, H. (2012). Wound repair and regeneration. Eur. Surg. Res. 49, 35-43. crossref(new window)

Schmitt, E., Parcellier, A., Gurbuxani, S., Cande, C., Hammann, A., Morales, M.C., Hunt, C.R., Dix, D.J., Kroemer, R.T., Giordanetto, F., et al. (2003). Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant. Cancer Res. 63, 8233-8240.

Schultz, J., Lorenz, P., Gross, G., Ibrahim, S., and Kunz, M. (2008). MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorageindependent growth. Cell Res. 18, 549-557. crossref(new window)

Shin, J.U., Lee, W.J., Tran, T.N., Jung, I., and Lee, J.H. (2015). Hsp70 knockdown by siRNA decreased collagen production in keloid fibroblasts. Yonsei Med. J. 56, 1619-1626. crossref(new window)

Singh, S., and Suri, A. (2014). Targeting the testis-specific heatshock protein 70-2 (HSP70-2) reduces cellular growth, migration, and invasion in renal cell carcinoma cells. Tumour Biol. 35, 12695-12706. crossref(new window)

Stankiewicz, A.R., Lachapelle, G., Foo, C.P., Radicioni, S.M., and Mosser, D.D. (2005). Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J. Biol. Chem. 280, 38729-38739. crossref(new window)

Wang, X., Chen, M., Zhou, J., and Zhang, X. (2014). HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). Int. J. Oncol. 45, 18-30. crossref(new window)

Yi, R., O'Carroll, D., Pasolli, H.A., Zhang, Z., Dietrich, F.S., Tarakhovsky, A., and Fuchs, E. (2006). Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat. Genet. 38, 356-362. crossref(new window)

Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., Huang, Y., Hu, X., Su, F., and Lieberman, J. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109-1123. crossref(new window)

Zhao, B., Han, H., Chen, J., Zhang, Z., Li, S., Fang, F., Zheng, Q., Ma, Y., Zhang, J., Wu, N., and Yang, Y. (2014). MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett. 342, 43-51. crossref(new window)

Zhu, X., Wu, L., Yao, J., Jiang, H., Wang, Q., Yang, Z. and Wu, F. (2015). MicroRNA let-7c inhibits cell proliferation and induces cell cycle arrest by targeting CDC25A in human hepatocellular carcinoma. PLoS One 10, e0124266. crossref(new window)

Zylicz, M., King, F.W., and Wawrzynow, A. (2001). Hsp70 interactions with the p53 tumour suppressor protein. EMBO J. 20, 4634-4638. crossref(new window)