Advanced SearchSearch Tips
A New Insight of Salt Stress Signaling in Plant
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 6,  2016, pp.447-459
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.0083
 Title & Authors
A New Insight of Salt Stress Signaling in Plant
Park, Hee Jin; Kim, Woe-Yeon; Yun, Dae-Jin;
  PDF(new window)
Many studies have been conducted to understand plant stress responses to salinity because irrigation-dependent salt accumulation compromises crop productivity and also to understand the mechanism through which some plants thrive under saline conditions. As mechanistic understanding has increased during the last decades, discovery-oriented approaches have begun to identify genetic determinants of salt tolerance. In addition to osmolytes, osmoprotectants, radical detoxification, ion transport systems, and changes in hormone levels and hormone-guided communications, the Salt Overly Sensitive (SOS) pathway has emerged to be a major defense mechanism. However, the mechanism by which the components of the SOS pathway are integrated to ultimately orchestrate plant-wide tolerance to salinity stress remains unclear. A higher-level control mechanism has recently emerged as a result of recognizing the involvement of GIGANTEA (GI), a protein involved in maintaining the plant circadian clock and control switch in flowering. The loss of GI function confers high tolerance to salt stress via its interaction with the components of the SOS pathway. The mechanism underlying this observation indicates the association between GI and the SOS pathway and thus, given the key influence of the circadian clock and the pathway on photoperiodic flowering, the association between GI and SOS can regulate growth and stress tolerance. In this review, we will analyze the components of the SOS pathways, with emphasis on the integration of components recognized as hallmarks of a halophytic lifestyle.
circadian clock;GIGANTEA;NaCl;salinity;salt overly sensitive pathway;
 Cited by
PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance, PLOS ONE, 2017, 12, 2, e0172869  crossref(new windwow)
A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato, Frontiers in Plant Science, 2017, 8  crossref(new windwow)
Identification of salt-stress responsive microRNAs from Solanum lycopersicum and Solanum pimpinellifolium , Plant Growth Regulation, 2017, 83, 1, 129  crossref(new windwow)
Antifungal Effect of Arabidopsis SGT1 Proteins via Mitochondrial Reactive Oxygen Species, Journal of Agricultural and Food Chemistry, 2017, 65, 38, 8340  crossref(new windwow)
The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress, Frontiers in Plant Science, 2017, 8  crossref(new windwow)
Chloride and carbonate salinity tolerance in Mimusops zeyheri seedlings during summer and winter shoot flushes, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2017, 67, 8, 737  crossref(new windwow)
Identification of MYB transcription factor genes and their expression during abiotic stresses in maize, Biologia Plantarum, 2017  crossref(new windwow)
The Antarctic moss leucine-rich repeat receptor-like kinase (PnLRR-RLK2) functions in salinity and drought stress adaptation, Polar Biology, 2017  crossref(new windwow)
The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana, Biochemical and Biophysical Research Communications, 2017, 490, 2, 225  crossref(new windwow)
Melatonin application confers enhanced salt tolerance by regulating Na+ and Cl− accumulation in rice, Plant Growth Regulation, 2017  crossref(new windwow)
Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J., and Harberd, N.P. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91-94. crossref(new window)

Adams, P., Nelson, D.E., Chmara, W., Bohnert, H.J., and Griffiths H. (1998). Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 138, 171-190. crossref(new window)

Ali, Z., Park, H.C., Ali, A., Oh, D.-H., Aman, R., Kropornicka, A., Hong, H., Choi, W., Chung, W.S., Kim, W.-Y., et al. (2012). TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows $K^+$ specificity in the presence of NaCl. Plant Physiol. 158, 1463-1474. crossref(new window)

Andres, F., and Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627-639. crossref(new window)

Ashley, M.K., Grant, M., and Grabov, A. (2006). Plant responses to potassium deficiencies: a role for potassium transport proteins. J. Exp. Bot. 57, 425-436. crossref(new window)

Aukerman, M. J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741. crossref(new window)

de Azevedo Neto, A.D., Prisco, J. T., Eneas-Filho, J., Abreu, C.E.B. de, and Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salttolerant and salt-sensitive maize genotypes. Env. Exp. Bot. 56, 87-94. crossref(new window)

Bajguz, A., and Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47, 1-8. crossref(new window)

Balazadeh, S., Siddiqui, H., Allu, A.D., Matallana-Ramirez, L.P., Caldana, C., Mehrnia, M., Zanor, M.-I., Kohler, B., and Mueller-Roeber, B. (2010). A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during saltpromoted senescence. Plant J. 62, 250-264. crossref(new window)

Barajas-Lopez, J. de D., Serrato, A.J., Cazalis, R., Meyer, Y., Chueca, A., Reichheld, J.P., and Sahrawy, M. (2011). Circadian regulation of chloroplastic f and m thioredoxins through control of the CCA1 transcription factor. J. Exp. Bot. 62, 2039-2051. crossref(new window)

Barba-Espin, G., Clemente-Moreno, M.J., Alvarez, S., Garcia-Legaz, M.F., HernAndez, J.A., and Diaz-Vivancos, P. (2011). Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biol. 13, 909-917. crossref(new window)

BarragAn, V., Leidi, E.O., Andres, Z., Rubio, L., De Luca, A., FernAndez, J.A., Cubero, B., and Pardo, J.M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24,1127-1142. crossref(new window)

Batelli, G., Verslues, P.E., Agius, F., Qiu, Q., Fujii, H., Pan, S., Schumaker, K.S., Grillo, S., and Zhu, J.-K. (2007). SOS2 promotes salt tolerance in part by interacting with the vacuolar $H^+$- ATPase and upregulating its transport activity. Mol. Cell Biol. 27, 7781-7790. crossref(new window)

Bendix, C., Mendoza, J.M., Stanley, D.N., Meeley, R., and Harmon, F.G. (2013). The circadian clock-associated gene gigantea1 affects maize developmental transitions. Plant Cell Environ. 36, 1379-1390. crossref(new window)

Bianco, C., and Defez, R. (2009). Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acidoverproducing Sinorhizobium meliloti strain. J. Exp. Bot. 60, 3097-3107. crossref(new window)

Black, R. (1960). Effects of naci on the ion uptake and growth of Atriplex vesicaria Heward. Aust. J. Biol. Sci. 13, 249-266. crossref(new window)

BlAzquez, M.A., Trenor, M., and Weigel, D. (2002). Independent control of gibberellin biosynthesis and flowering time by the circadian clock in Arabidopsis. Plant Physiol. 130, 1770-1775. crossref(new window)

Bleecke, A.B., and Patterson, S.E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9, 1169-1179. crossref(new window)

Blokhina, O., Virolainen, E., and Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179-194. crossref(new window)

Bohnert, H.J., and Jensen, R.G. (1996). Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 14, 89-97. crossref(new window)

Bohnert, H.J., and Cushman, J.C. (2000). The ice plant cometh: lessons in abiotic stress tolerance. J. Plant Growth Regul. 19, 334-346. crossref(new window)

Bohnert, H.J., Nelson, D.E., and Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell 7, 1099-1111. crossref(new window)

Cao, S., Ye, M., and Jiang, S. (2005). Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep. 24, 683-690. crossref(new window)

Cao, S., Jiang, S., and Zhang, R. (2006). The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis. Plant Growth Regul. 48, 261-270. crossref(new window)

Cao, S.Q., Song, Y.Q., and Su, L. (2007a). Freezing sensitivity in the gigantea mutant of Arabidopsis is associated with sugar deficiency. Biol. Plant 51, 359-362. crossref(new window)

Cao, W.-H., Liu, J., He, X.-J., Mu, R.-L., Zhou, H.-L., Chen, S.-Y., and Zhang, J.-S. (2007b). Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 143, 707-719.

Cheong, M., and Yun, D.-J. (2007). Salt-stress signaling. J. Plant Biol. 50, 148-155. crossref(new window)

Cheong, Y.H., Kim, K.-N., Pandey, G.K., Gupta, R., Grant, J.J., and Luan, S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15, 1833-1845. crossref(new window)

Chung, J.-S., Zhu, J.-K., Bressan, R.A., Hasegawa, P.M., and Shi, H. (2008). Reactive oxygen species mediate $Na^+$-induced SOS1 mRNA stability in Arabidopsis. Plant J. 53, 554-565.

Covington, M.F., and Harmer, S.L. (2007). The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS One 5, e222.

Covington, M., Maloof, J., Straume, M., Kay, S., and Harmer, S. (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 9, R130. crossref(new window)

Craig Plett, D., and Moller, I.S. (2010). $Na^+$ transport in glycophytic plants: what we know and would like to know. Plant Cell Env. 33, 612-626. crossref(new window)

Cramer, G.R., and Jones, R.L. (1996). Osmotic stress and abscisic acid reduce cytosolic calcium activities in roots of Arabidopsis thaliana. Plant Cell Env. 19, 1291-1298. crossref(new window)

Crepy, M., Yanovsky, M.J., and Casal, J.J. (2007). Blue rhythms between GIGANTEA and phytochromes. Plant Signal. Behav. 2, 530-532. crossref(new window)

Dalchau, N., Baek, S.J., Briggs, H.M., Robertson, F.C., Dodd, A.N., Gardner, M.J., Stancombe, M.A., Haydon, M.J., Stan, G.-B., Goncalves, J.M., et al. (2011). The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc. Natl. Acad. Sci. USA 108, 5104-5109. crossref(new window)

Dassanayake, M., Oh, D.-H., Haas, J.S., Hernandez, A., Hong, H., Ali, S., Yun, D.-J., Bressan, R.A., Zhu, J.-K., Bohnert, H.J., et al. (2011). The genome of the extremophile crucifer Thellungiella parvula. Nat Genet. 43, 913-918. crossref(new window)

David, K.M., Armbruster, U., Tama, N., and Putterill, J. (2006). Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark. FEBS Lett. 580, 1193-1197. crossref(new window)

DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D., and Hama, H. (2001). Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol. 126, 759-769. crossref(new window)

Dietz, K.-J. (2003). Plant peroxiredoxins. Annu. Rev. Plant Biol. 54, 93-107. crossref(new window)

Dodd, A.N., Salathia, N., Hall, A., Kevei, E., Toth, R., Nagy, F., Hibberd, J.M., Millar, A.J., and Webb, A.A.R. (2005a). Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630-633. crossref(new window)

Dodd, A.N., Love, J., and Webb, A.A.R. (2005b). The plant clock shows its metal: circadian regulation of cytosolic free $Ca^{2+}$. Trends Plant Sci. 10, 15-21. crossref(new window)

Dodd, A.N., Jakobsen, M.K., Baker, A.J., Telzerow, A., Hou, S.-W., Laplaze, L., Barrot, L., Scott Poethig, R., Haseloff, J., and Webb, A.A.R. (2006). Time of day modulates low-temperature $Ca^{2+}$ signals in Arabidopsis. Plant J. 48, 962-973. crossref(new window)

Dodd, A.N., Gardner, M.J., Hotta, C.T., Hubbard, K.E., Dalchau, N., Love, J., Assie, J.-M., Robertson, F.C., Jakobsen, M.K., Goncalves, J., et al. (2007). The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 318, 1789-1792. crossref(new window)

Dong, H., Zhen, Z., Peng, J., Chang, L., Gong, Q., and Wang, N.N. (2011). Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J. Exp. Bot. 62, 4875-4887. crossref(new window)

Ducrocq, S., Madur, D., Veyrieras, J.-B., Camus-Kulandaivelu, L., Kloiber-Maitz, M., Presterl, T., Ouzunova, M., Manicacci, D., and Charcosset, A. (2008). Key impact of Vgt1 on flowering time adaptation in maize: Evidence from association mapping and ecogeographical information. Genetics 178, 2433-2437. crossref(new window)

Eimert, K., Wang, S.M., Lue, W.I., and Chen, J. (1995). Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7, 1703-1712. crossref(new window)

Etchegaray, J.-P., Lee, C., Wade, P.A., and Reppert, S.M. (2003). Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177-182. crossref(new window)

Farre, E.M., Harmer, S.L., Harmon, F.G., Yanovsky, M.J., and Kay, S.A. (2005). Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr. Biol. 15, 47-54. crossref(new window)

Flowers, T.J. (2004). Improving crop salt tolerance. J. Exp. Bot. 55, 307-319. crossref(new window)

Flowers, T.J., and Colmer, T.D. (2008). Salinity tolerance in halophytes. New Phytol. 179, 945-963. crossref(new window)

Flowers, T.J., Troke, P.F., and Yeo, A.R. (1977). The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28, 89-121. crossref(new window)

Flowers, T., Galal, H., and Bromham, L. (2010). Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct. Plant Biol. 37, 604-612. crossref(new window)

Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18, 4679-4688. crossref(new window)

Fowler, S.G., Cook, D., and Thomashow, M.F. (2005). Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 137, 961-968. crossref(new window)

Fricke, W., Akhiyarova, G., Wei, W., Alexandersson, E., Miller, A., Kjellbom, P.O., Richardson, A., Wojciechowski, T., Schreiber, L., Veselov, D., et al. (2006). The short-term growth response to salt of the developing barley leaf. J. Exp. Bot. 57, 1079-1095. crossref(new window)

Fujimori, T., Sato, E., Yamashino, T., and Mizuno, T. (2005). PRR5 (PSEUDO-RESPONSE REGULATOR 5) plays antagonistic roles to CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 69, 426-430. crossref(new window)

Gemes, K., Poor, P., HorvAth, E., Kolbert, Z., Szopko, D., Szepesi, A., and Tari, I. (2011). Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol. Plant 142, 179-192. crossref(new window)

Gepstein, S., Sabehi, G., Carp, M.-J., Hajouj, T., Nesher, M.F.O., Yariv, I., Dor, C., and Bassani, M. (2003). Large-scale identification of leaf senescence-associated genes. Plant J. 36, 629-642. crossref(new window)

Ghassemi, F., Jakeman, A.J., and Nix, H.A. (1995). "Salinisation of land and water resources: Human causes, extent, management, and case studies," (Wallingford, England: CAB international).

Gill, S.S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909-930. crossref(new window)

Graf, A., Schlereth, A., Stitt, M., and Smith, A.M. (2010). Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc. Natl. Acad. Sci. USA 107, 9458-9463 crossref(new window)

Hanikenne, M., Kroymann, J., Trampczynska, A., Bernal, M., Motte, P., Clemens, S., and Kramer, U. (2013). Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genet. 9, e1003707. crossref(new window)

Hao, L., Zhao, Y., Jin, D., Zhang, L., Bi, X., Chen, H., Xu, Q., Ma, C., and Li, G. (2012). Salicylic acid-altering Arabidopsis mutants response to salt stress. Plant Soil. 354, 81-95. crossref(new window)

Harmer, S.L. (2009). The circadian system in higher plants. Annu. Rev. Plant Biol. 60, 357-377. crossref(new window)

Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.-S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110-2113. crossref(new window)

Hedrich, R., and Neher, E. (1987). Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329, 833-836. crossref(new window)

Hollister, J.D., Arnold, B.J., Svedin, E., Xue, K.S., Dilkes, B.P., and Bomblies, K. (2012). Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet. 8, e1003093. crossref(new window)

Hong, S., Kim, S.A., Guerinot, M.L., and McClung, C.R. (2013). Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis. Plant Physiol. 161, 893-903. crossref(new window)

HorvAth, E., Szalai, G., and Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. J. Plant Growth Regul. 26, 290-300. crossref(new window)

Hotta, C.T., Gardner, M.J., Baek, S.J., Suhita, D., and Webb, A.A.R. (2007). Modulation of environmental responses of plants by circadian clocks. Plant Cell Env. 30, 333-349. crossref(new window)

Howell, S.H. (2013). Endoplasmic Reticulum Stress Responses in Plants. Annu. Rev. Plant Biol. 64, 477-499. crossref(new window)

Huq, E., Tepperman, J.M., and Quail, P.H. (2000). GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 9789-9794. crossref(new window)

Jain, M., and Khurana, J.P. (2009). Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J. 276, 3148-3162. crossref(new window)

Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., and Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced $K^+$ loss via a GORK channel. J. Exp. Bot. 64, 2255-2268. crossref(new window)

Ji, H., Pardo, J.M., Batelli, G., Van Oosten, M.J., Bressan, R.A., and Li, X. (2013). The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol. Plant. 6, 275-286. crossref(new window)

Jiang, X., Leidi, E.O., and Pardo, J.M. (2010). How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav. 5, 792-795. crossref(new window)

Jibran, R., Hunter, D., and Dijkwel, P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol. Biol. 82, 1-15. crossref(new window)

Jung, C., and Muller, A.E. (2009). Flowering time control and applications in plant breeding. Trends Plant Sci. 14, 563-573. crossref(new window)

Jung, J.-H., Seo, Y.-H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.-H., and Park, C.-M. (2007). The GIGANTEA-regulated MicroRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19, 2736-2748. crossref(new window)

Kar, R.K. (2011). Plant responses to water stress: Role of reactive oxygen species. Plant Signal. Behav. 6, 1741-1745. crossref(new window)

Katiyar-Agarwal, S., Zhu, J., Kim, K., Agarwal, M., Fu, X., Huang, A., and Zhu, J.-K. (2006). The plasma membrane $Na^+$/$H^+$ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 103, 18816-18821. crossref(new window)

Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., and Bohnert, H.J. (2001). Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13, 889-905. crossref(new window)

Kellermeier, F., Chardon, F., and Amtmann, A. (2013). Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol. 161, 1421-1432. crossref(new window)

Kende, H., and Zeevaart, J.A. (1997). The five "classical" plant hormones. Plant Cell 9, 1197-1210. crossref(new window)

Ketchum, K., and Poole, R. (1991). Cytosolic calcium regulates a potassium current in corn (Zea mays) protoplasts. J. Membr. Biol. 119, 277-288. crossref(new window)

Kidokoro, S., Maruyama, K., Nakashima, K., Imura, Y., Narusaka, Y., Shinwari, Z. K., Osakabe, Y., Fujita, Y., Mizoi, J., Shinozaki, K., et al. (2009). The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol. 151, 2046-2057. crossref(new window)

Kim, B.-G., Waadt, R., Cheong, Y.H., Pandey, G.K., Dominguez-Solis, J.R., Schultke, S., Lee, S.C., Kudla, J., and Luan, S. (2007a). The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J. 52, 473-484. crossref(new window)

Kim, D.-W., Shibato, J., Agrawal, G.K., Fujihara, S., Iwahashi, H., Kim, D.H., Shim, I.-S., and Rakwal, R. (2007b). Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol. Cells 24, 45-59.

Kim, W.-Y., Fujiwara, S., Suh, S.-S., Kim, J., Kim, Y., Han, L., David, K., Putterill, J., Nam, H.G., and Somers, D.E. (2007c). ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356-360. crossref(new window)

Kim, W.-Y., Salome, P.A., Fujiwara, S., Somers, D.E., and McClung, C.R. (2010). Chapter 19-Characterization of pseudo-response regulators in plants. In methods enzymol. Simon, Melvin I., Crane, Brian R., and Crane, Alexandrine eds., (Academic Press), pp. 357-378.

Kim, Y., Yeom, M., Kim, H., Lim, J., Koo, H. J., Hwang, D., Somers, D., and Nam, H.G. (2012). GIGANTEA and EARLY FLOWERING 4 in Arabidopsis exhibit differential phase-specific genetic influences over a diurnal cycle. Mol. Plant 5, 678-687. crossref(new window)

Kim, W.-Y., Ali, Z., Park, H.J., Park, S.J., Cha, J.-Y., Perez-Hormaeche, J., Quintero, F.J., Shin, G., Kim, M.R., Qiang, Z., et al. (2013). Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat. Commun. 4, 1352. crossref(new window)

Kinnunen, P.K.J. (2000). Lipid bilayers as osmotic response elements. Cell. Physiol. Biochem. 10, 243-250. crossref(new window)

Konig, S., Mosblech, A., and Heilmann, I. (2007). Stress-inducible and constitutive phosphoinositide pools have distinctive fatty acid patterns in Arabidopsis thaliana. FASEB J. 21, 1958-1967. crossref(new window)

Kopittke, P. (2012). Interactions between Ca, Mg, Na and K: alleviation of toxicity in saline solutions. Plant Soil. 352, 353-362. crossref(new window)

Krasensky, J., and Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63, 1593-1608. crossref(new window)

Krebs, M., Beyhl, D., Gorlich, E., Al-Rasheid, K.A.S., Marten, I., Stierhof, Y.-D., Hedrich, R., and Schumacher, K. (2010). Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc. Natl. Acad. Sci. USA 107, 3251-3256. crossref(new window)

Kreps, J.A., Wu, Y., Chang, H.-S., Zhu, T., Wang, X., and Harper, J.F. (2002). Transcriptome Changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 2129-2141. crossref(new window)

Krishnamurthy, A., and Rathinasabapathi, B. (2013). Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. Plant Cell Env. 36, 1838-1849. crossref(new window)