Advanced SearchSearch Tips
Fine Mutational Analysis of 2B8 and 3H7 Tag Epitopes with Corresponding Specific Monoclonal Antibodies
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 6,  2016, pp.460-467
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.2265
 Title & Authors
Fine Mutational Analysis of 2B8 and 3H7 Tag Epitopes with Corresponding Specific Monoclonal Antibodies
Kim, Tae-Lim; Cho, Man-Ho; Sangsawang, Kanidta; Bhoo, Seong Hee;
  PDF(new window)
Bacteriophytochromes are phytochrome-like light-sensing photoreceptors that use biliverdin as a chromophore. To study the biochemical properties of the Deinococcus radiodurans bacteriophytochrome (DrBphP) protein, two anti-DrBphP mouse monoclonal antibodies (2B8 and 3H7) were generated. Their specific epitopes were identified in our previous report. We present here fine epitope mapping of these two antibodies by using truncation and substitution of original epitope sequences in order to identify minimized epitope peptides. The previously reported original epitope sequences for 2B8 and 3H7 were truncated from both sides. Our analysis showed that the minimal peptide sequence lengths for 2B8 and 3H7 antibodies were nine amino acids (RDPLPFFPP) and six amino acids (PGEIEE), respectively. We further characterized these peptides in order to investigate their reactivity after single deletion and single substitution of the original peptides. We found that single-substituted 2B8 epitope (RDPLPAFPP) and dual-substituted 3H7 epitope (PGEIAD) showed significantly increased reactivity. These two antibodies with high reactivity for the short modified peptide sequences are valueble for developing new peptide tags for protein research.
2B8 monoclonal antibody;3H7 monoclonal antibody;DrBphP protein;epitope mapping;tag;
 Cited by
Immuno-affinity purification of 2B8-tagged proteins, Applied Biological Chemistry, 2017  crossref(new windwow)
Bedouelle, H., and Duplay, P. (1988). Production in Escherichia coli and one-step purification of bifunctional hybrid proteins which bind maltose. Export of the Klenow polymerase into the periplasmic space. Eur. J. Biochem. 171, 541-549. crossref(new window)

Bhoo, S.H., Davis, S.J., Walker, J., Karniol, B., and Vierstra, R.D. (2001). Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414, 776-779. crossref(new window)

Brizzard, B. (2008) Epitope tagging. Biotechniques 44, 693-695. crossref(new window)

Bucher, M.H., Evdokimov, A.G., and Waugh, D.S. (2002). Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein. Acta. Crystallogr. D. Biol. Crystallogr. 58, 392-397. crossref(new window)

Chant, A., Kraemer-Pecore, C.M., Watkin, R., and Kneale, G.G. (2005). Attachment of a histidine tag to the minimal zinc finger protein of the Aspergillus nidulans gene regulatory protein AreA causes a conformational change at the DNA-binding site. Protein Expr. Purif. 39, 152-159. crossref(new window)

Cheng, H.W., Chen, K.C., Raja, J.A., Li, J.X., and Yeh, S.D. (2013). An efficient tag derived from the common epitope of tospoviral NSs proteins for monitoring recombinant proteins expressed in both bacterial and plant systems. J. Biotechnol. 164, 510-519. crossref(new window)

Chu, H.Y., and Englund, J.A. (2013). Respiratory syncytial virus disease: prevention and treatment. Curr. Top Microbiol. Immunol. 372, 235-258.

Davis, S.J., Vener, A.V., and Vierstra, R.D. (1999). Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286, 2517-2520. crossref(new window)

de Mello, R.A., Marques, A.M., and Araujo, A. (2013). HER2 therapies and gastric cancer: a step forward. World J. Gastroenterol. 19, 6165-6169. crossref(new window)

Evan, G.I., Lewis, G.K., Ramsay, G., and Bishop, J.M. (1985). Isolation of monoclonal antibodies specific for human c-myc protooncogene product. Mol. Cell Biol. 5, 3610-3616. crossref(new window)

Field, J., Nikawa, J., Broek, D., MacDonald, B., Rodgers, L., Wilson, I.A., Lerner, R.A., and Wigler, M. (1988). Purification of a RASresponsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell Biol. 8, 2159-2165. crossref(new window)

Gasic, K., and Korban, S. (2005). Nonspecific binding of monoclonal anti-FLAG M2 antibody in Indian mustard (Brassica juncea). Plant Mol. Biol. Rep. 23, 9-16. crossref(new window)

Goel, A., Colcher, D., Koo, J.S., Booth, B.J., Pavlinkova, G., and Batra, S.K. (2000). Relative position of the hexahistidine tag effects binding properties of a tumor-associated single-chain Fv construct. Biochim. Biophys. Acta 1523, 13-20. crossref(new window)

Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Pat Cerretti, D., Urdal, D.L., and Conlon, P.J. (1988). A Short Polypeptide Marker Sequence Useful for Recombinant Protein Identification and Purification. Nat. Biotech. 6, 1204-1210. crossref(new window)

Jarvik, J.W., and Telmer, C.A. (1998). Epitope tagging. Annu. Rev. Genet. 32, 601-618. crossref(new window)

Kim, T.L., Yoo, J., Sangsawang, K., Cho, M.H., Yang, S.H., Suh, J.W., Hahn, T.R., and Bhoo, S.H. (2014). Epitope mapping of monoclonal antibodies for the Deinococcus radiodurans bacteriophytochome. Protein Sci. 23, 812-818. crossref(new window)

Kolodziej, P.A., and Young, R.A. (1991). Epitope tagging and protein surveillance. Methods Enzymol. 194, 508-519. crossref(new window)

Lopez-Requena, A., Burrone, O.R., and Cesco-Gaspere, M. (2012). Idiotypes as immunogens: facing the challenge of inducing strong therapeutic immune responses against the variable region of immunoglobulins. Front Oncol. 2, 159.

Martin-Mateos, M.A. (2007). Monoclonal antibodies in pediatrics: use in prevention and treatment. Allergol. Immunopathol. 35, 145-150. crossref(new window)

Neill, J.D., Sellers, J.C., Musgrove, L.C., and Duck, L.W. (1997). Epitope-tagged gonadotropin-releasing hormone receptors heterologously-expressed in mammalian (COS-1) and insect (Sf9) cells. Mol. Cell. Endocrinol. 127, 143-154. crossref(new window)

Nygren, P.A., Stahl, S., and Uhlen, M. (1994). Engineering proteins to facilitate bioprocessing. Trends Biotechnol. 12, 184-188. crossref(new window)

Park, S.H., Cheong, C., Idoyaga, J., Kim, J.Y., Choi, J.H., Do, Y., Lee, H., Jo, J.H., Oh, Y.S., Im, W., et al. (2008). Generation and application of new rat monoclonal antibodies against synthetic FLAG and OLLAS tags for improved immunodetection. J. Immunol. Methods 331, 27-38. crossref(new window)

Petersen, N.H., Hansen, P.R., and Houen, G. (2011). Fast and efficient characterization of an anti-gliadin monoclonal antibody epitope related to celiac disease using resin-bound peptides. J. Immunol. Methods 365, 174-182. crossref(new window)

Porath, J., Carlsson, J., Olsson, I., and Belfrage, G. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598-599. crossref(new window)

Routzahn, K.M., and Waugh, D.S. (2002). Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins. J. Struct. Funct. Genomics 2, 83-92. crossref(new window)

Sachdev, D., and Chirgwin, J.M. (1999). Properties of soluble fusions between mammalian aspartic proteinases and bacterial maltose-binding protein. J. Protein Chem. 18, 127-136. crossref(new window)

Schmidt, T.G., and Skerra, A. (1993). The random peptide libraryassisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng. 6, 109-122. crossref(new window)

Simmons, C.P., Bernasconi, N.L., Suguitan, A.L., Mills, K., Ward, J.M., Chau, N.V., Hien, T.T., Sallusto, F., Ha do, Q., Farrar, J., et al. (2007). Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza. PLoS Med. 4, e178. crossref(new window)

Smith, D.B., and Johnson, K.S. (1988). Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31-40. crossref(new window)

Smith, J.C., Derbyshire, R.B., Cook, E., Dunthorne, L., Viney, J., Brewer, S.J., Sassenfeld, H.M., and Bell, L.D. (1984). Chemical synthesis and cloning of a poly(arginine)-coding gene fragment designed to aid polypeptide purification. Gene 32, 321-327. crossref(new window)

Sun, W.P., Wang, F.M., Xie, F., Wang, G.Q., Sun, J., Yu, G.H., Qiu, Y.H., and Zhang, X.G. (2007). A novel anti-human syndecan-1 (CD138) monoclonal antibody 4B3: characterization and application. Cell Mol. Immunol. 4, 209-214.

Terpe, K. (2003). Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523-533. crossref(new window)

Van Regenmortel, M.H.V. (1996). Mapping epitope structure and activity: from one-dimensional prediction to four-dimensional description of antigenic specificity. Methods 9, 465-472. crossref(new window)

Waugh, D.S. (2005). Making the most of affinity tags. Trends Biotechnol. 23, 316-320. crossref(new window)

Woestenenk, E.A., Hammarstrom, M., van den Berg, S., Hard, T., and Berglund, H. (2004). His tag effect on solubility of human proteins produced in Escherichia coli: a comparison between four expression vectors. J. Struct. Funct. Genomics 5, 217-229. crossref(new window)

Wu, J., and Filutowicz, M. (1999). Hexahistidine (His6)-tag dependent protein dimerization: a cautionary tale. Acta Biochim. Pol. 46, 591-599.