JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PLZF+ Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 6,  2016, pp.468-476
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.0004
 Title & Authors
PLZF+ Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells
Kang, Byung Hyun; Park, Hyo Jin; Park, Hi Jung; Lee, Jae-Il; Park, Seong Hoe; Jung, Kyeong Cheon;
  PDF(new window)
 Abstract
PLZF-expressing invariant natural killer T cells and CD4 T cells are unique subsets of innate T cells. Both are selected via thymocyte-thymocyte interaction, and they contribute to the generation of activated/memory-like CD4 and CD8 T cells in the thymus via the production of IL-4. Here, we investigated whether innate T cells also affect the development and function of regulatory CD4 T cells. Flow cytometry analysis of the thymus and spleen from both CIITA transgenic C57BL/6 and wild-type BALB/c mice, which have abundant CD4 T cells and invariant natural killer T cells, respectively, revealed that T cells in these mice exhibited a activated/memorylike phenotype. The frequency of regulatory T cells was considerably decreased in cell-deficient and mice as well as in an IL-4-deficient background, such as in and mice, indicating that the acquisition of an activated/ memory-like phenotype was dependent on innate T cells and IL-4. Using fetal thymic organ culture, we further demonstrated that IL-4 in concert with TGF- enhanced the acquisition of the activated/memory-like phenotype of regulatory T cells. In functional aspects, the activated/ memory-like phenotype of Treg cells was directly related to their suppressive function; regulatory T cells of mice more efficiently suppressed ovalbumin-induced allergic airway inflammation compared with their counterparts from wild-type mice. All of these findings suggest that innate T cells also augmented the generation of activated/memory-like regulation via IL-4 production.
 Keywords
IL-4;PLZF;regulatory T lymphocyte;
 Language
English
 Cited by
 References
1.
Alonzo, E.S., and Sant' Angelo, D.B. (2011). Development of PLZF-expressing innate T cells. Curr. Opin. Immunol. 23, 220-227. crossref(new window)

2.
Annacker, O., Coombes, J.L., Malmstrom, V., Uhlig, H.H., Bourne, T., Johansson-Lindbom, B., Agace, W.W., Parker, C.M., and Powrie, F. (2005). Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J. Exp. Med. 202, 1051-1061. crossref(new window)

3.
Banz, A., Peixoto, A., Pontoux, C., Cordier, C., Rocha, B., and Papiernik, M. (2003). A unique subpopulation of $CD4^+$ regulatory T cells controls wasting disease, IL-10 secretion and T cell homeostasis. Eur. J. Immunol. 33, 2419-2428. crossref(new window)

4.
Bayer, A.L., Yu, A.X., and Malek, T.R. (2007). Function of the IL-2R for thymic and peripheral $CD4^+CD25^+$ $Foxp3^+$ T regulatory cells. J. Immunol. 178, 4062-4071. crossref(new window)

5.
Bird, L. (2010). Regulatory T cells nurtured by TGF${\beta}$. Nat. Rev. Immunol. 10, 466-466.

6.
Burchill, M.A., Yang, J.Y., Vogtenhuber, C., Blazar, B.R., and Farrar, M.A. (2007). IL-2 receptor ${\beta}$-dependent STAT5 activation is required for the development of $Foxp3^+$ regulatory T cells. J. Immunol. 178, 280-290. crossref(new window)

7.
Chang, L.Y., Lin, Y.C., Kang, C.W., Hsu, C.Y., Chu, Y.Y., Huang, C.T., Day, Y.J., Chen, T.C., Yeh, C.T., and Lin, C.Y. (2012). The indispensable role of CCR5 for in vivo suppressor function of tumor-derived $CD103^+$ effector/memory regulatory T cells. J. Immunol. 189, 567-574. crossref(new window)

8.
Choi, E.Y., Park, W.S., Jung, K.C., Chung, D.H., Bae, Y.M., Kim, T.J., Song, H.G., Kim, S.H., Ham, D.I., and Hahn, J.H. et al. (1997). Thymocytes positively select thymocytes in human system. Hum. Immunol. 54, 15-20. crossref(new window)

9.
Choi, E.Y., Jung, K.C., Park, H.J., Chung, D.H., Song, J.S., Yang, S.D., Simpson, E., and Park, S.H. (2005). Thymocyte-thymocyte interaction for efficient positive selection and maturation of CD4 T cells. Immunity 23, 387-396. crossref(new window)

10.
Collison, L.W., and Vignali, D.A. (2011). In vitro Treg suppression assays. Methods Mol. Biol. 707, 21-37. crossref(new window)

11.
Dardalhon, V., Awasthi, A., Kwon, H., Galileos, G., Gao, W., Sobel, R.A., Mitsdoerffer, M., Strom, T.B., Elyaman, W., and Ho, I.C., et al. (2008). IL-4 inhibits TGF-${\beta}$-induced $Foxp3^+$ T cells and, together with TGF-${\beta}$, generates IL-$9^+$ IL-$10^+$ $Foxp3^-$ effector T cells. Nat. Immunol. 9, 1347-1355. crossref(new window)

12.
El-Asady, R., Yuan, R., Liu, K., Wang, D., Gress, R.E., Lucas, P.J., Drachenberg, C.B., and Hadley, G.A. (2005). TGF-${\beta}$-dependent CD103 expression by $CD8^+$ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med. 201, 1647-1657. crossref(new window)

13.
Faustino, L., da Fonseca, D.M., Takenaka, M.C., Mirotti, L., Florsheim, E.B., Guereschi, M.G., Silva, J.S., Basso, A.S., and Russo, M. (2013). Regulatory T cells migrate to airways via CCR4 and attenuate the severity of airway allergic inflammation. J. Immunol. 190, 2614-2621. crossref(new window)

14.
Gottschalk, R.A., Corse, E., and Allison, J.P. (2010). TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J. Exp. Med. 207, 1701-1711. crossref(new window)

15.
Grueter, B., Petter, M., Egawa, T., Laule-Kilian, K., Aldrian, C.J., Wuerch, A., Ludwig, Y., Fukuyama, H., Wardemann, H., and Waldschuetz, R., et al. (2005) Runx3 regulates integrin ${\alpha}_E$/CD103 and CD4 expression during development of $CD4^-$/$CD8^+$ T cells. J. Immunol. 175, 1694-1705. crossref(new window)

16.
Hadley, G.A., Rostapshova, E.A., Gomolka, D.M., Taylor, B.M., Bartlett, S.T., Drachenberg, C.I., and Weir, M.R. (1999). Regulation of the epithelial cell-specific integrin, CD103, by human $CD8^+$ cytolytic T lymphocytes. Transplantation. 67, 1418-1425. crossref(new window)

17.
Horwitz, D.A., Zheng, S.G., and Gray, J.D. (2008). Natural and TGF-${\beta}$-induced $Foxp3^+CD4^+$ $CD25^+$ regulatory T cells are not mirror images of each other. Trends Immunol. 29, 429-435. crossref(new window)

18.
Huehn, J., Siegmund, K., Lehmann, J.C., Siewert, C., Haubold, U., Feuerer, M., Debes, G.F., Lauber, J, Frey, O, and Przybylski, G.K. (2004). Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like $CD4^+$ regulatory T cells. J. Exp. Med. 199, 303-313. crossref(new window)

19.
Kang, B.H., Min, H.S., Lee, Y.J., Choi, B., Kim, E.J., Lee, J., Kim, J.R., Cho, K.H., Kim, T.J., and Jung, K.C., et al. (2015a). Analyses of the TCR repertoire of MHC class II-restricted innate $CD4^+$ T cells. Exp. Mol. Med. 47, e154. crossref(new window)

20.
Kang, B.H., Park, H.J., Yum, H.I., Park, S.P., Park, J.K., Kang, E.H., Lee, J.I., Lee, E.B., Park, C.G., and Jung, K.C., et al. (2015b). Thymic low affinity/avidity interaction selects natural Th1 cells. J. Immunol. 194, 5861-5871. crossref(new window)

21.
Karecla, P.I., Bowden, S.J., Green, S.J., and Kilshaw, P.J. (1995). Recognition of E-cadherin on epithelial cells by the mucosal T cell integrin ${\alpha}$M290 ${\beta}$7 (${\alpha}E{\beta}7$). Eur. J. Immunol. 25, 852-856. crossref(new window)

22.
Kilshaw, P.J., and Murant, S.J. (1991). Expression and regulation of ${\beta}$-7 (${\beta}$-P) integrins on mouse lymphocytes: relevance to the mucosal immune system. Eur. J. Immunol. 21, 2591-2597. crossref(new window)

23.
Lai, D., Zhu, J., Wang, T., Hu-Li, J., Terabe, M., Berzofsky, J.A., Clayberger, C., and Krensky, A.M. (2011). KLF13 sustains thymic memory-like $CD8^+$ T cells in BALB/c mice by regulating IL-4-generating invariant natural killer T cells. J. Exp. Med. 208, 1093-1103. crossref(new window)

24.
Lee, Y.J., Jung, K.C., and Park, S.H. (2009). MHC class II-dependent T-T interactions create a diverse, functional and immunoregulatory reaction circle. Immunol. Cell. Biol. 87, 65-71. crossref(new window)

25.
Lee, Y.J., Jeon, Y.K., Kang, B.H., Chung, D.H., Park, C.G., Shin, H.Y., Jung, K.C., and Park, S.H. (2010). Generation of $PLZF^+$ $CD4^+$ T cells via MHC class II-dependent thymocyte-thymocyte interaction is a physiological process in humans. J. Exp. Med. 207, 237-246. crossref(new window)

26.
Lee, Y.J., Holzapfel, K.L., Zhu, J., Jameson, S.C., and Hogquist, K.A. (2013). Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146-1154. crossref(new window)

27.
Lehmann, J., Huehn, J., de la Rosa, M., Maszyna, F., Kretschmer, U., Krenn, V., Brunner, M., Scheffold, A., and Hamann, A. (2002). Expression of the integrin ${\alpha}E{\beta}7$ identifies unique subsets of $CD25^+$ as well as $CD25^-$ regulatory T cells. Proc. Natl. Acad. Sci. USA 99, 13031-13036. crossref(new window)

28.
Li, M.O., and Flavell, R.A. (2008). TGF-${\beta}$: A master of all T cell trades. Cell 134, 392-404. crossref(new window)

29.
Li, W., Kim, M.G., Gourley, T.S., McCarthy, B.P., Sant'Angelo, D.B., and Chang, C.H. (2005). An alternate pathway for CD4 T cell development: thymocyte-expressed MHC class II selects a distinct T cell population. Immunity 23, 375-386. crossref(new window)

30.
Li, W., Sofi, M.H., Rietdijk, S., Wang, N., Terhorst, C., and Chang, C.H. (2007). The SLAM-Associated protein signaling pathway is required for development of $CD4^+$ T cells selected by homotypic thymocyte interaction. Immunity 27, 763-774. crossref(new window)

31.
Lio, C.W., and Hsieh, C.S. (2008). A two-step process for thymic regulatory T cell development. Immunity 28, 100-111. crossref(new window)

32.
Liu, Y., Zhang, P., Li, J., Kulkarni, A.B., Perruche, S., and Chen, W. (2008). A critical function for TGF-${\beta}$ signaling in the development of natural $CD4^+CD25^+Foxp3^+$ regulatory T cells. Nat. Immunol. 9, 632-640. crossref(new window)

33.
Mackay, L.K., Rahimpour, A., Ma, J.Z., Collins, N., Stock, A.T., Hafon, M.L., Vega-Ramos, J., Lauzurica, P., Mueller, S.N., and Stefanovic, T., et al. (2013). The developmental pathway for $CD103^+CD8^+$ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294-1301. crossref(new window)

34.
Maerten, P., Shen, C., Bullens, D.M., Van Assche, G., Van Gool, S., Geboes, K., Rutgeerts, P., and Ceuppens, J.L. (2005). Effects of interleukin 4 on $CD25^+$$CD4^+$ regulatory T cell function. J. Auto-immun. 25, 112-120.

35.
McHugh, R.S., Whitters, M.J., Piccirillo, C.A., Young, D.A., Shevach, E.M., Collins, M., and Byrne, M.C. (2002). $CD4^+CD25^+$ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311-323. crossref(new window)

36.
Min, H.S., Lee, Y.J., Jeon, Y.K., Kim, E.J., Kang, B.H., Jung, K.C., Chang, C.H., and Park, S.H. (2011). MHC Class II-restricted interaction between thymocytes plays an essential role in the production of innate $CD8^+$ T Cells. J. Immunol. 186, 5749-5757. crossref(new window)

37.
Ouyang, W., Beckett, O., Ma, Q., and Li, M.O. (2010). Transforming growth factor-${\beta}$ signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32, 642-653. crossref(new window)

38.
Park, S.H., Bae, Y.M., Kim, T.J., Ha, I.S., Kim, S., Chi, J.G., and Lee, S.K. (1992). HLA-DR expression in human fetal thymocytes. Hum. Immunol. 33, 294-298. crossref(new window)

39.
Park, J.H., Adoro, S., Guinter, T., Erman, B., Alag, A.S., Catalfamo, M., Kimura, M.Y., Cui, Y., Lucas, P.J., and Gress, R.E., et al. (2010). Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257-264. crossref(new window)

40.
Prince, A.L., Kraus, Z., Carty, S.A., Ng, C., Yin, C.C., Jordan, M.S., Schwartzberg, P.L., and Berg, L.J. (2014a). Alonzo, E.S., and Sant'Angelo, D.B. (2011). Development of PLZF-expressing innateT cells. Curr. Opin. Immunol. 23, 220-227.

41.
Prince, A.L., Watkin, L.B., Yin, C.C., Selin, L.K., Kang, J., Schwartzberg, P.L., and Berg, L.J. (2014b). Innate $PLZF^+CD4^+$ ${\alpha}{\beta}$ T cells develop and expand in the absence of Itk. J. Immunol. 193, 673-687. crossref(new window)

42.
Rao, P.E., Petrone, A.L., and Ponath, P.D. (2005). Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-${\beta}$. J. Immunol. 174, 1446-1455. crossref(new window)

43.
Robertson, H., Wong, W.K., Talbot, D., Burt, A.D., and Kirby, J.A. (2001). Tubulitis after renal transplantation: demonstration of an association between $CD103^+$ T cells, transforming growth factor ${\beta}$1 expression and rejection grade. Transplantation 71, 306-313. crossref(new window)

44.
Saito, K., Torii, M., Ma, N., Tsuchiya, T., Wang, L., Hori, T., Nagakubo, D., Nitta, N., Kanegasaki, S., and Hieshima, K. (2008). Differential regulatory function of resting and preactivated allergen-specific $CD4^+$ $CD25^+$ regulatory T cells in Th2-type airway inflammation. J. Immunol. 181, 6889-6897. crossref(new window)

45.
Siewert, C., Lauer, U., Cording, S., Bopp, T., Schmitt, E., Hamann, A., and Huehn, J. (2008). Experience-driven development: effector/memory-like ${{\alpha}_E}^+Foxp3^+$ regulatory T cells originate from both naive T cells and naturally occurring naive-like regulatory T cells. J. Immunol. 180, 146-155. crossref(new window)

46.
Skapenko, A., Kalden, J.R., Lipsky, P.E., and Schulze-Koops, H. (2005). The IL-4 receptor ${\alpha}$-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing $CD25^+CD4^+$ regulatory T cells from $CD25^-CD4^+$ precursors. J. Immunol. 775, 6107-6116.

47.
Stephens, G.L., Andersson, J., and Shevach, E.M. (2007). Distinct subsets of $Foxp3^+$ regulatory T cells participate in the control of immune responses. J. Immunol. 178, 6901-6911. crossref(new window)

48.
Treiner, E., and Lantz, O. (2006). CD1d- and MR1-restricted invariant T cells: of mice and men. Curr. Opin. Immunol. 18, 519-526. crossref(new window)

49.
Vignali, D.A.A., Collison, L.W., and Workman, C.J. (2008). How regulatory T cells work. Nat. Rev. Immunol. 8, 523-532. crossref(new window)

50.
Wang, D., Yuan, R., Feng, Y., El-Asady, R., Farber, D.L., Gress, R.E., Lucas, P.J., and Hadley, G.A. (2004). Regulation of CD103 expression by $CD8^+$ T cells responding to renal allografts. J. Immunol. 172, 214-221. crossref(new window)

51.
Wei, J., Duramad, O., Perng, O.A., Reiner, S.L., Liu, Y.J., and Qin, F.X. (2007). Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of $Foxp3^+$ regulatory T cells. Proc. Nat'l. Acad. Sci. USA 104, 18169-18174.

52.
Weinreich, M.A., Odumade, O.A., Jameson, S.C., and Hogquist, K.A. (2010). T cells expressing the transcription factor PLZF regulate the development of memory-like $CD8^+$ T cells. Nat. Immunol. 11, 709-716. crossref(new window)

53.
Zhao, D., Zhang, C., Yi, T., Lin, C.L., Todorov, I., Kandeel, F., Forman, S., and Zeng, D. (2008). In vivo-activated $CD103^+CD4^+$ regulatory T cells ameliorate ongoing chronic graft-versus-host disease. Blood 112, 2129-2138. crossref(new window)