JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 6,  2016, pp.477-483
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.0027
 Title & Authors
Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis
Song, Chieun; Chung, Woo Sik; Lim, Chae Oh;
  PDF(new window)
 Abstract
Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (), and an endogenous propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis.
 Keywords
gene regulation;osmoprotectant;transcription factor;transgenic plant;
 Language
English
 Cited by
1.
Transcriptomic Response of Arabidopsis thaliana Exposed to CuO Nanoparticles, Bulk Material, and Ionic Copper, Environmental Science & Technology, 2017, 51, 18, 10814  crossref(new windwow)
 References
1.
Busch, W., Wunderlich, M., and Schoffl, F. (2005). Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J. 41, 1-14.

2.
Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2 is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143, 251-262.

3.
Chen, H., Hwang, J.E., Lim, C.J., Kim, D.Y., Lee, S.Y., and Lim, C.O. (2010). Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem. Biophys. Res. Commun. 401, 238-244. crossref(new window)

4.
Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R. (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268-281. crossref(new window)

5.
ElSayed, A.I., Rafudeen, M.S., and Golldack, D. (2014). Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol. 16, 1-8.

6.
Guan, Q., Wen, C., Zeng, H., and Zhu, J. (2013). A KH domaincontaining putative RNA-binding protein is critical for heat stressresponsive gene regulation and thermotolerance in Arabidopsis. Mol. Plant 6, 386-395. crossref(new window)

7.
Guo, L., Chen, S., Liu, K., Liu, Y., Ni, L., Zhang, K., and Zhang, L. (2008). Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana. Plant Cell Physiol. 49, 1306-1315. crossref(new window)

8.
Hall, A.E. (2001). Crop responses to the environment. (CRC press, Boca Raton, FL).

9.
Hwang, J.E., Lim, C.J., Chen, H., Je, J., Song, C., and Lim, C.O. (2012). Overexpression of Arabidopsis dehydration-responsive element-binding protein 2C confers tolerance to oxidative stress. Mol. Cells 33, 135-140. crossref(new window)

10.
Ikeda, M., Mitsuda, N., and Ohme-Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heatinducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol. 157, 1243-1254. crossref(new window)

11.
Je, J., Chen, H., Song, C., and Lim, C.O. (2014). Arabidopsis DREB2C modulates ABA biosynthesis during germination. Biochem. Biophys. Res. Commun. 452, 91-98. crossref(new window)

12.
Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: ${\beta}$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907.

13.
Jung, H.S., Crisp, P.A., Estavillo, G.M., Cole, B., Hong, F., Mockler, T.C., Pogson, B.J., and Chory, J. (2013). Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc. Natl. Acad. Sci. USA 110, 14474-14479. crossref(new window)

14.
Keller, F., and Pharr, D.M. (1996) Metabolism of carbohydrates in sinks and sources: galactosyl-sucrose oligosaccharides. In E. Zamski, A.A. Schaffer, eds., Photoassimilate distribution in plants and crops: Source-Sink Relationships. (Marcel Dekker, New York), pp.157-183.

15.
Kim, H.S., Park, B.O., Yoo, J.H., Jung, M.S., Lee, S.M., Han, H.J., Kim, K.E., Kim, S.H., Lim, C.O., Yun, D.J., et al. (2007). Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J. Biol. Chem. 282, 36292-36302. crossref(new window)

16.
Kim, M.S., Cho, S.M., Kang, E.Y., Im, Y.J., Hwangbo, H., Kim, Y.C., Ryu, C.M., Yang, K.Y., Chung, G.C., and Cho, B.H. (2008). Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Mol. Plant-Microbe Inter. 12, 1643-1653.

17.
Lahuta, L.B., Pluskota, W.E., Stelmaszewska, J., and Szablinska, J. (2014). Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.). J Plant Physiol. 171, 1306-1314. crossref(new window)

18.
Lim, C.J., Hwang, J.E., Chen, H., Hong, J.K., Yang, K.A., Choi, M.S., Lee, K.O., Chung, W.S., Lee, S.Y., and Lim, C.O. (2007). Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem. Biophys. Res. Commun. 362, 431-436. crossref(new window)

19.
Martinez-Trujillo, M., Limones-Briones, V., Cabrera-Ponce, J.L., and Herrera-Estrella, L. (2004). Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol. Biol. Rep. 22, 63-70. crossref(new window)

20.
Miller, G., Suzuki, N., Ciftci-Yilmaz, S., and Mittler, R. (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ. 33, 453-467. crossref(new window)

21.
Nishizawa, A., Yabuta, Y., Yoshida, E., Marut,a T., Yoshimura, K., and Shigeoka, S. (2006). Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535-547. crossref(new window)

22.
Nishizawa, A., Yabuta, Y., and Shigeoka, S. (2008). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 147, 1251-1263. crossref(new window)

23.
Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., and Scharf, K.D. (2001). Arabidopsis and heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6, 177-189. crossref(new window)

24.
Panikulangara, T.J., Eggers-Schumacher, G., Wunderlich, M., Stransky, H., and Schoffl, F. (2004). Galactinol synthase 1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol. 136, 3148-3158. crossref(new window)

25.
Peterbouer, T., and Richter, A. (2001). Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci. Res. 11, 185-197.

26.
Scarpeci, T.E., Zanor, M.I., and Valle, E.M. (2008). Investigating the role of plant heat shock proteins during oxidative stress. Plant Sig. Behav. 3, 856-857. crossref(new window)

27.
Shin, S.Y., Kim, M.H., Kim, Y.H., Park, H. M., and Yoon, H.S. (2013). Co-expression of monodehydroascorbate reductase and dehydroascorbate reductase from Brassica rapa effectively confers tolerance to freezing-induced oxidative stress. Mol. Cells 36, 304-315. crossref(new window)

28.
Slesak, R., Karpinska, B., Surowka, E., Miszalski, Z., and Karpinski, S. (2003). Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol. 44, 573-581. crossref(new window)

29.
Song, C., Je, J., Hong, J.K., and Lim, C.O. (2014). Ectopic expression of an Arabidopsis dehydration-responsive element-binding factor DREB2C improves salt stress tolerance in crucifers. Plant Cell Rep. 33, 1239-1254. crossref(new window)

30.
Sun, Z., Qi, X., Wang, Z., Li, P., Wu, C., Zhang, H., and Zhao, Y. (2013). Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses Plant Physiol. Biochem. 69, 82-89. crossref(new window)

31.
Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki K., and Shinozaki K. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29, 417-426. crossref(new window)

32.
Vallelian-Bindschedler, L., Mosinger, E., Metraux, J.P., and Schweizer, P. (1998). Structure, expression and localization of a germin-like protein in barley (Hordeum vulgare L.) that is insolubilized in stressed leaves. Plant Mol. Biol. 37, 297-308. crossref(new window)

33.
Valluru, R., and den Ende, W.V. (2011). Myo-inositol and beyond - Emerging networks under stress. Plant Sci. 181, 387-400. crossref(new window)

34.
Xuan, Y., Zhou, S., Wang, L., Cheng, Y., and Zhao, L. (2010). Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol. 153, 1895-1906. crossref(new window)

35.
Yu, B., Xu, C., and Benning, C. (2002). Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphatelimited growth. Proc. Natl. Acad. Sci. USA 99, 5732-5737. crossref(new window)

36.
Yoshida, T., Sakuma, Y., Todaka, D., Maruyama, K., Qin, F., Mizoi, J., Kidokoro, S., Fujita, Y., Shinozaki, K., and Yamaguchi- Shinozaki, K. (2008). Functional analysis of an Arabidopsis heatshock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem. Biophys. Res. Commun. 362, 431-436.