Advanced SearchSearch Tips
Crystal Structure of Hypothetical Fructose-Specific EIIB from Escherichia coli
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Molecules and Cells
  • Volume 39, Issue 6,  2016, pp.495-500
  • Publisher : Korea Society for Molecular and Cellular Biology
  • DOI : 10.14348/molcells.2016.0055
 Title & Authors
Crystal Structure of Hypothetical Fructose-Specific EIIB from Escherichia coli
Park, Jimin; Kim, Mi-Sun; Joo, Keehyung; Jhon, Gil-Ja; Berry, Edward A.; Lee, Jooyoung; Shin, Dong Hae;
  PDF(new window)
We have solved the crystal structure of a predicted fructose-specific enzyme from Escherichia coli () involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system transferring carbohydrates across the cytoplasmic membrane. belongs to a sequence family with more than 5,000 sequence homologues with 25-99% amino-acid sequence identity. It reveals a conventional Rossmann-like sandwich fold with a unique -sheet topology. Its C-terminus is longer than its closest relatives and forms an additional -strand whereas the shorter C-terminus is random coil in the relatives. Interestingly, its core structure is similar to that of enzyme from E. coli () transferring a phosphate moiety. In the active site of the closest homologues, a unique motif CXXGXAHT comprising a P-loop like architecture including a histidine residue is found. The conserved cysteine on this loop may be deprotonated to act as a nucleophile similar to that of . The conserved histidine residue is presumed to bind the negatively charged phosphate. Therefore, we propose that the catalytic mechanism of is similar to that of transferring phosphoryl moiety to a specific carbohydrate.
frwD;fructose specific enzyme EIIB;functional cysteine;PTS permease;PTS system;X-ray crystallography;
 Cited by
Ab, E., Schuurman-Wolters, G., Reizer, J., Saier, M.H., Dijkstra, K., Scheek, R.M., and Robillard G.T. (1997) The NMR side-chain assignments and solution structure of enzyme IIB of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Protein Sci. 6, 304-314.

Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect D: Biol. Crystallogr. 66, 213-221. crossref(new window)

Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M., Terwilliger, T.C., Urzhumtsev, A., Zwart, P.H., and Adams, P.D. (2012). Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect D: Biol. Crystallogr. 68, 352-367.

Barabote, R.D., and Saier, M.H., Jr. (2005). Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol. Mol. Biol. Rev. 69, 608-634. crossref(new window)

Buchan, D.W., Minneci, F., Nugent, T.C., Bryson, K., and Jones, D.T. (2013). Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 41, W349-357. crossref(new window)

Deutscher, J., Ake, F.M., Derkaoui, M., Zebre, A.C., Cao, T.N., Bouraoui, H., Kentache, T., Mokhtari, A., Milohanic, E., and Joyet, P. (2014). The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. 78, 231-256. crossref(new window)

Holm, L., and Rosenstrom, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545-549. crossref(new window)

Joo, K., Kim, M.-S., Park, J., Lee, J., and Shin, D.H. (2015). Highaccuracy protein structure modeling and its application to molecular replacement of crystallographic phasing. Biodesign. 3, 123-130.

Lei, J., Li, L.F., and Su, X.D. (2009). Crystal structures of phosphotransferase system enzymes PtxB (IIB(Asc)) and PtxA (IIA(Asc)) from Streptococcus mutans. J. Mol. Biol. 386, 465-475. crossref(new window)

Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., et al. (2015). CDD: NCBI's conserved domain database. Nucleic acids Res. 43, D222-226. crossref(new window)

Oganesyan, N., Kim, S.-H., and Kim, R. (2005). On-column protein refolding for crystallization. J. Struct. Funct. Genomics 6, 177-182. crossref(new window)

Saier, M.H., Jr., and Reizer, J. (1994). The bacterial phosphotransferase system: new frontiers 30 years later. Mol. Microbiol. 13, 755-764. crossref(new window)

Sankhala, R.S., Lokareddy, R.K., and Cingolani, G. (2014). Structure of human PIR1, an atypical dual-specificity phosphatase. Biochemistry 53, 862-871. crossref(new window)

Schauder, S., Nunn, R.S., Lanz, R., Erni, B., and Schirmer, T. (1998). Crystal structure of the IIB subunit of a fructose permease (IIBLev) from Bacillus subtilis. J. Mol. Biol. 276, 591-602. crossref(new window)

Shin, D.H. (2008). A preliminary X-ray study of a refolded PTS EIIBfruc protein from Escherichia coli. Protein Pept. Lett. 15, 630-632. crossref(new window)

Su, X.D., Taddei, N., Stefani, M., Ramponi, G., and Nordlund, P. (1994). The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase. Nature 370, 575-578. crossref(new window)

Tadwal, V.S., Sundararaman, L., Manimekalai, M.S., Hunke, C., and Gruber, G. (2012). Relevance of the conserved histidine and asparagine residues in the phosphate-binding loop of the nucleotide binding subunit B of A(1)A(0) ATP synthases. J. Struct. Biol. 180, 509-518. crossref(new window)

van Montfort, R.L., Pijning, T., Kalk, K.H., Reizer, J., Saier, M.H., Jr., Thunnissen, M.M., Robillard, G.T., and Dijkstra, B.W. (1997). The structure of an energy-coupling protein from bacteria, IIBcellobiose, reveals similarity to eukaryotic protein tyrosine phosphatases. Structure 5, 217-225. crossref(new window)

Waterhouse, A.M., Procter, J. B., Martin, D.M., Clamp, M., and Barton, G.J. (2009). Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191. crossref(new window)