JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MODULI OF SELF-DUAL METRICS ON COMPLEX HYPERBOLIC MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MODULI OF SELF-DUAL METRICS ON COMPLEX HYPERBOLIC MANIFOLDS
Kim, Jaeman;
  PDF(new window)
 Abstract
On compact complex hyperbolic manifolds of complex dimension two, we show that the dimension of the space of infinitesimal deformations of self-dual conformal structures is smaller than that of the deformation obstruction space and that every self-dual metric with covariantly constant Ricci tensor must be a standard one upto rescalings and diffeomorphisms.
 Keywords
infinitesimal deformations;self-dual conformal structures;compact complex hyperbolic manifolds;deformation obstruction space;covariantly constant Ricci tensor;
 Language
English
 Cited by
1.
Stability of complex hyperbolic space under curvature-normalized Ricci flow, Geometriae Dedicata, 2013, 164, 1, 231  crossref(new windwow)
 References
1.
Pro. R. Soc. Lond. Ser. A., 1978. vol.362. pp.425-461 crossref(new window)

2.
Einstein manifolds, 1986.

3.
Compositio Matematica., 1983. vol.49. pp.405-433

4.
Curvature and Homology, 1982.

5.
Math. Ann., 1993. vol.296. pp.687-708 crossref(new window)

6.
Discrete groups in geometry and analysis, 1987.

7.
Math. Ann., 1992. vol.294. pp.591-609 crossref(new window)

8.
Ann. Math., 1949. vol.50. pp.916-924 crossref(new window)

9.
Math. Res. Lett., 1995. vol.2. pp.1-8 crossref(new window)

10.
Publ. IHES, 1968. vol.34. pp.53-104 crossref(new window)

11.
Journal of Mathematics and Mechanics, 1994. vol.18. pp.779-786