JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TRACE-CLASS INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TRACE-CLASS INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS
Jo, Young-Soo; Kang, Joo-Ho;
  PDF(new window)
 Abstract
Given vectors x and y in a Hilbert space, an intepolating operator is a bounded operator T such that Tx=y. an interpolating operator for n vectors satisfies the equation Tx=y, for i=1, 2,…, n. In this article, we obtained the fellowing : Let x = (x) and y = (y) be two vectors in H such that x0 for all i = 1, 2,…. Then the following statements are equivalent. (1) There exists an operator A in AlgL such that Ax = y, A is a trace-class operator and every E in L reduces A. (2) (equation omitted).mitted).
 Keywords
trace-class;tridiagonal algebra;commutative subspace lattice;AlgL;
 Language
English
 Cited by
 References
1.
J. Functional Analysis, 1975. vol.3. pp.208-233

2.
Proc. Amer. Math. Soc., 1966. vol.17. pp.413-415

3.
Operator Theory: Adv. Appl., 1981. vol.2. pp.105-120 crossref(new window)

4.
Indiana University Math. J., 1980. vol.29. pp.121-126 crossref(new window)

5.
Illinois J. Math., 1989. vol.33. 4, pp.657-672

6.
Pacific Journal of Mathematics, 1989. vol.140. 1, pp.97-115 crossref(new window)

7.
Michigan Math. J., 1990. vol.37. pp.305-314 crossref(new window)

8.
Rocky Mountain Journal of Math., 0000.

9.
Proc. Nat. Acad. Sci. U.S.A., 1957. pp.273-276

10.
Proc. London Math. Soc., 1969. vol.3. 19, pp.45-68