JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RESOLUTION OF THE CONJECTURE ON STRONG PRESERVERS OF MULTIVARIATE MAJORIZATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RESOLUTION OF THE CONJECTURE ON STRONG PRESERVERS OF MULTIVARIATE MAJORIZATION
Beasley, Leroy-B.; Lee, Sang-Gu; Lee, You-Ho;
  PDF(new window)
 Abstract
In this paper, we will investigate the set of linear operators on real square matrices that strongly preserve multivariate majorisation without any additional conditions on the operator. This answers earlier conjecture on nonnegative matrices in [3] .
 Keywords
majorization;multivariate majorization;strong preserver;doubly stochastic matrix;
 Language
English
 Cited by
 References
1.
P. M. Alberti and A. Uhlmann, Stochasticity and partial order, Math. and Its Appl. 9, D. Reidel, Berlin, 1982.

2.
T. Ando, Majorization, doubly stochastic matrices and comparison of eigenvalues, Linear Algebra Appl. 118 (1989), 163-248. crossref(new window)

3.
L. B. Beasley, S.-G. Lee, and Y.-H. Lee, Linear operators strongly preserving multivariate majorization, Kyongpook Math. J. 39 (1999), no. 1, 191-194.

4.
J. V. Bondar, Comments and complements to: Inequalities: Theory of Majorization and Its Appl. by Albert W. Marshall and Ingram Olkin, Linear Algebra Appl. 199 (1994), 115-130. crossref(new window)

5.
E. P. Botta, Linear transformations preserving unitary group, Linear and Multilinear Algebra 8 (1979), 8-96. crossref(new window)

6.
R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, Cambridge, 1991.

7.
G.-S. Cheon and Y.-H. Lee, The doubly stochastic matrices of a multivariate majorization, J. Korean Math. Soc. 32 (1995), no. 4, 857-867.

8.
G. Dahl, Matrix majorization, Linear Algebra Appl. 288 (1999), 53-73. crossref(new window)

9.
J. Dixon, Rigid embeddings of simple groups in the general linear groups, Canad. J. Math. 29 (1977), 384-391. crossref(new window)

10.
L. Elsner, Matrices leaving invariant a convex set, Linear Algebra Appl. 42 (1982), 103-107. crossref(new window)

11.
F. Hiai, Similarity preserving linear maps on matrices, Linear Algebra Appl. 97 (1987), 127-139. crossref(new window)

12.
M. Marcus, All linear operators leaving the unitary group invariant, Duke Math. J. 26 (1959), 155-163. crossref(new window)

13.
A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, 1979.

14.
S. Pierce, et al., A Survey of Linear Preserver Problems, Linear and Multilinear Algebra 33 (1992), no. 1 and no. 2. crossref(new window)