JOURNAL BROWSE
Search
Advanced SearchSearch Tips
J-INVARIANT SUBMANIFOLDS OF CODIMENSION 2 IN A COMPLEX PROJECTIVE SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
J-INVARIANT SUBMANIFOLDS OF CODIMENSION 2 IN A COMPLEX PROJECTIVE SPACE
Choe, Yeong-Wu;
  PDF(new window)
 Abstract
In this paper we prove that if M is a J-invariant sub-manifold of codimension 2 in a complex projective space , and the second fundamental tensor is cyclic-parallel or M has harmonic curvature, then M is locally complex quadric Q(C) or P(C).
 Keywords
J-invariant submanifold;complex projective space;cyclic-parallel;harmonic curvature;
 Language
English
 Cited by
 References
1.
Y.-W. Choe and M. Okumura, Scalar curvature of a CR-submanifold of complex projective space, Arch. Math. 68 (1997), 340-346. crossref(new window)

2.
A. Derzirski, Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. z. 172 (1980), 273-280. crossref(new window)

3.
U-H. Ki, On certain submanifolds of codimension 2 of a locally fubinian manifold, Kodai Math. Sem. Rep. 24 (1972), 17-27. crossref(new window)

4.
U-H. Ki, Cyclic-parallel real hypersurfaces of a complex space form, Tsukuba J. Math. 12-1 (1988), 259-268.

5.
U-H. Ki and H. Nakagawa, Submanifolds with harmonic curvature, Tsukuba J. Math. 12-1 (1986), 285-292.

6.
S. Kobayashi and K. Nomizu, Foundations of differential geometry I, New York, 1963.

7.
K. Ogiue, Notes in Differential Geometry, Universidad de Granada, Lecture Notes by O. J. Garay, 1985.

8.
M. Okumura, Real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 213 (1975), 355-364.

9.
W.-H. Sohn, Some curvature conditions of n-dimensional CR-submanifolds of(n- 1) CR-dimension in a complex projective sapce II, Comm. Korean Math. Soc. 16 (2001), 265-275.

10.
R. Takagi, Real hypersurfaces in a complex projective space, J. Math. Soc. Japan 27 (1975), 506-516. crossref(new window)

11.
T. Takahashi, Sasakian manifolds with pseudo-Riemannian metric, Tohoku Math. J. 21 (1969), 271-290. crossref(new window)

12.
K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, 1983.