JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TOPOLOGICAL CONJUGACY OF DISJOINT FLOWS ON THE CIRCLE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TOPOLOGICAL CONJUGACY OF DISJOINT FLOWS ON THE CIRCLE
Cieplinski, Krzysztof;
  PDF(new window)
 Abstract
Let $F
 Keywords
(disjoint, non-singular, singular, non-dense, dense, discrete) flow;degree;topological conjugacy;rotation number;
 Language
English
 Cited by
1.
Recent results on iteration theory: iteration groups and semigroups in the real case, Aequationes mathematicae, 2014, 87, 3, 201  crossref(new windwow)
2.
General Construction of Non-Dense Disjoint Iteration Groups on the Circle, Czechoslovak Mathematical Journal, 2005, 55, 4, 1079  crossref(new windwow)
3.
Schröder equation and commuting functions on the circle, Journal of Mathematical Analysis and Applications, 2008, 342, 1, 394  crossref(new windwow)
4.
The Structure of Disjoint Iteration Groups on the Circle, Czechoslovak Mathematical Journal, 2004, 54, 1, 131  crossref(new windwow)
 References
1.
L. Alseda, J. Llibre, and M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, 5, World Scientific Publishing Co., Inc., River Edge, NJ, 1993.

2.
J. S. Bae, K. J. Min, D. H. Sung, and S. K. Yang, Positively equicontinuous flows are topologically conjugate to rotation flows, Bull. Korean Math. Soc. 36 (1999), no. 4, 707-716.

3.
M. Bajger, On the structure of some flows on the unit circle, Aequationes Math. 55 (1998), no. 1-2, 106-121. crossref(new window)

4.
M. Bajger and M. C. Zdun, On rational flows of continuous functions, Iteration theory (Batschuns, 1992), 265-276, World Sci. Publishing, River Edge, NJ, 1996.

5.
L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, 1992.

6.
K. Cieplinski, On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups, Publ. Math. Debrecen 55 (1999), no. 3-4, 363-383.

7.
K. Cieplinski, On conjugacy of disjoint iteration groups on the unit circle, European Conference on Iteration Theory (Muszyna-Zlockie, 1998), Ann. Math. Sil. 13 (1999), 103-118.

8.
K. Cieplinski, The rotation number of the composition of homeomorphisms, Rocznik Nauk.-Dydakt. AP w Krakowie. Prace Mat. 17 (2000), 83-87.

9.
K. Cieplinski, The structure of disjoint iteration groups on the circle, Czechoslovak, Math. J . (to appear) crossref(new window)

10.
K. Cieplinski and M. C. Zdun, On semi-conjugacy equation for homeomorphisms of the circle, Functional Equations-Results and Advances, Kluwer Academic Publishers, Boston, Dordrecht, London (to appear)

11.
I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic theory, Grundlehren der Mathematischen Wissenschaften, 245, Springer-Verlag, New York, 1982.

12.
Z. Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, The M.I.T. Press, Cambridge, Mass.-London, 1971.

13.
C. T. C. Wall, A geometric introduction to topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972.

14.
M. C. Zdun, On embedding of homeomorphisms of the circle in a continuous flow, Iteration theory and its functional equations (Lochau, 1984), 218-231, Lecture Notes in Math., 1163, Springer, Berlin, 1985. crossref(new window)

15.
M. C. Zdun, On some invariants of conjugacy of disjoint iteration groups, Results Math. 26 (1994), no. 3-4, 403-410. crossref(new window)