JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ISOCOMPACTNESS AND RELATED TOPICS OF WEAK COVERING PROPERTY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ISOCOMPACTNESS AND RELATED TOPICS OF WEAK COVERING PROPERTY
Cho, Myung-Hyun; Park, Won-Woo;
  PDF(new window)
 Abstract
In this paper, we study the concepts of isocompactness and cl-isocompactness. We generalize a pure space defined by Arhangelskii and get some results on initially K-compact spaces. We also consider open problems related to isocompactness and cl-isocompactness.
 Keywords
cl-isocompact;initially K-compact;isocompact;K-neat;K-pure;pure;weakly star reducible;
 Language
English
 Cited by
 References
1.
A. V. Arhangel'skii, The star method, new classes of spaces and countable compactness, Soviet Math. Dokl. 21 (1980), 550-554.

2.
P. Bacon, The compactness of countably compact spaces, Pacific J. Math. 32 (1970), 587-592. crossref(new window)

3.
R. L. Blair, Closed-completeness in spaces with weak covering properties, Settheoretic Topology, Academic Press, New York-San Francisco-London, 1977, pp. 17-45.

4.
R. L. Blair, On a theorem of Chaber Topology Proceedings 5 (1980), 33-46.

5.
D. K. Burke, Covering Properties, in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 349-422.

6.
J. Cao, On isocompactness of function spaces, Bull. Austral. Math. Soc. 60 (1999), 483-486. crossref(new window)

7.
J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 24 (1976), 993-998.

8.
M. H. Cho, Isocompactness of weakly star reducible spaces, Q & A in General Topology 14 (1996), 123-129.

9.
S. W. Davis, A cushioning-type weak covering property, Pacific J. Math. 80 (1979), 359-370. crossref(new window)

10.
S. W. Davis, On F${\tau}$-spaces, General Topology and Appl. 9 (1978), 131-138. crossref(new window)

11.
J. Dugundji, Topology, Allyn and Bacon, 1966.

12.
N. Dykes, Generalizations of realcompact spaces, Pacific J. Math. 33 (1970), 571-581. crossref(new window)

13.
F. W. Eckertson, S. Garcia-Ferreira, M. Sanchis, and S. Watson, An isocompact Tychonoff space whose square is not isocompact, Topology Proceedings 22 (1997),181-190.

14.
R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

15.
S. Garcia-Ferreira and M. Sanchis, Projection maps and isocompactness (preprint).

16.
L. Gillman and M. Jerison, Rings of continuous functions, Princeton, 1960.

17.
J. D. Hansard, Function space topologies, Pacific J. Math. 35 (1970), 381-388. crossref(new window)

18.
E. Hewitt, Rings of real continuous functions, Trans. Amer. Math. Soc. 64 (1948), 49-99. crossref(new window)

19.
M. Ismail and P. J. Nyikos, On spaces in which countably compact sets are closed, and hereditary properties, Top. Appl. 11 (1980), 281-292. crossref(new window)

20.
M. Ismail and A. Szymanski, Compact spaces representable as unions of nice subspaces, Topology and its Appl. 59 (1994), 287-298. crossref(new window)

21.
I. Juhasz, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf space, Canad. J. Math. 28 (1976), 998-1005. crossref(new window)

22.
M. V. Matveev, A survey on star covering properties, Topology Atlas Preprint #330, 1998.

23.
R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ. 13, Amer. Math. Soc. Providence, R.I., 1962.

24.
S. Nedev, Symmetrizable spaces and final compactness, Soviet Math. Dokl. 8 (1967), 890-892.

25.
G. M. Reed, The intersection topology with respect to the real line and the countable ordinals, Trans. Amer. Math. Soc. 297 (1986), 509-520. crossref(new window)

26.
M. Sakai, On CL-isocompactness and weak Borel completeness, Tsukuba J. Math. 8 (1984), 377-382. crossref(new window)

27.
M. Sakai, A new class of isocompact spaces and related results, Pacific J. Math. 122 (1986), 211-22l. crossref(new window)

28.
R. M. Stephenson Jr., Initially K-compact and related spaces, in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 603-632.

29.
J. E. Vaughan, Countably compact and sequentially compact spaces, in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 569-602.

30.
J. M. Worrell, Jr and H. H. Wicke, A covering property which implies isocompactness I, Proc. Amer. Math. Soc. 79 (1979), 331-334. crossref(new window)

31.
H. H. Wicke and J. M. Worrell, Jr, A covering property which implies isocompactness II, Topology Proceedings 4 (1979), 213-224.

32.
H. H. Wicke and J. M. Worrell, Jr, Characterizations of paracompactness and subparacompactness using star reducibility, Proc. Amer. Math. Soc. 111 (1991), 1119-1127. crossref(new window)

33.
H. H. Wicke, Not all realcompact spaces are ultrapure, Topology and its Appl. 91 (1999), 87-90. crossref(new window)