JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TORSION THEORY, CO-COHEN-MACAULAY AND LOCAL HOMOLOGY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TORSION THEORY, CO-COHEN-MACAULAY AND LOCAL HOMOLOGY
Bujan-Zadeh, Mohamad Hosin; Rasoulyar, S.;
  PDF(new window)
 Abstract
Let A be a commutative ring and M an Artinian .A-module. Let be a torsion radical functor and (T, F) it`s corresponding partition of Spec(A) In [1] the concept of Cohen-Macauly modules was generalized . In this paper we shall define -co-Cohen-Macaulay (abbr. -co-CM). Indeed this is one of the aims of this paper, we obtain some satisfactory properties of such modules. An-other aim of this paper is to generalize the concept of cograde by using the left derived functor (-) of the -adic completion functor, where a is contained in Jacobson radical of A.A.
 Keywords
torsion theory;co-Cohen-Macaulay;local homology modules;Krull dimension;cograde;
 Language
English
 Cited by
 References
1.
Honam Math. J., 1998. vol.20.

2.
Proc. Amer. Math. Soc., 1973. vol.38. pp.471-476

3.
Trans. Amer. Math. Soc., 1973. vol.184. pp.73-85 crossref(new window)

4.
Quart. J. Maths. Oxford, 1973. vol.24. 2, pp.47-57 crossref(new window)

5.
Hirosima Math. J., 1976. vol.6. pp.573-587

6.
Quart. J. Math. Oxford, 1975. vol.26. 3, pp.269-273 crossref(new window)

7.
Math. Proc. Camb. Phil. Soc., 1992. vol.111. pp.25-33 crossref(new window)

8.
Math. Proc. Camb. Phil. Soc., 1990. vol.108. pp.231-246 crossref(new window)

9.
Publ. Mah., 1992. vol.36. pp.956-979

10.
Lec. Note. Ser., 1990. vol.145.

11.
Fomm. in Alg., 1994. vol.22. 6, pp.2173-2204

12.
J. Pure. Appl. Alg., 2000. vol.149. pp.101-104 crossref(new window)