JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A FREQUENCY-DOMAIN METE10D FOR FINITE ELEMENT SOLUTIONS OF PARABOLIC PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A FREQUENCY-DOMAIN METE10D FOR FINITE ELEMENT SOLUTIONS OF PARABOLIC PROBLEMS
Lee, Chang-Ock; Lee, Jongwoo; Sheen, Dongwoo;
  PDF(new window)
 Abstract
We introduce and analyze a frequency-domain method for parabolic partial differential equations. The method is naturally parallelizable. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we propose to solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution in the space-time domain. Existence and uniqueness as well as error estimates are given. Fourier invertibility is also examined. Numerical experiments are presented.
 Keywords
parabolic problems;finite element methods;parallel algorithm;Fourier transform;
 Language
English
 Cited by
 References
1.
Sobolev Spaces,

2.
Finite Elecments, Theory, fast solvers, and applications in solid mechanis,

3.
The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics, vol.15.

4.
The Finite Element Method for Elliptic Problems,

5.
Handbook of Numerical Analysis, vol.2.

6.
Mathematical Analysis and Numerical Methods for Science and Technology, vol.2.

7.
Math. Mod. Meth. Appl. Sci., vol.4. pp.509-531 crossref(new window)

8.
Math. Mod. Meth. Appl. Sci., vol.3. pp.171-194 crossref(new window)

9.
Elliptic Problem Solvers Ⅱ, pp.45-52

10.
Trans. Amer. Math. Soc., vol.346. pp.475-487 crossref(new window)

11.
Finite Element Methods for Navoer-Stokes Equations, Theory and Algorithms,

12.
Boundary Value Problems in Non-Smooth Domains,

13.
Numerical Solutions of Partial Differential Equations by the Finite Element Method,

14.
Comput. Methods Appl. Mech. Engng., vol.187. 1-2, pp.351-362 crossref(new window)

15.
Comput. Methods Appl. Mech. Engng., vol.169. 1-2, pp.19-29 crossref(new window)

16.
Quelques methodes de resolution des problems aux linites non lineaires,

17.
Les Methodes Directes en Theorie des Equations Elliptiques,

18.
Math. Comp., vol.69. pp.177-195 crossref(new window)