JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONG LAWS FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES (II)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRONG LAWS FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES (II)
Sung, Soo-Hak;
  PDF(new window)
 Abstract
Let (X, , n1) be a sequence of i.i.d. random variables and { , 1in, n1} be an array of constants. Let ø() be a positive increasing function on (0, ) satisfying ø() ↑ and ø(C) = O(ø()) for any C > 0. When EX = 0 and E[ø(|X|)]〈, some conditions on ø and { } are given under which (equation omitted).).
 Keywords
strong laws of large numbers;almost sure convergence;weighted sums of i.i.d. random variables;arrays;
 Language
English
 Cited by
1.
STRONG LAWS FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES,;

대한수학회논문집, 2006. vol.21. 4, pp.771-778 crossref(new window)
1.
A Model-Free Measure of Aggregate Idiosyncratic Volatility and the Prediction of Market Returns, Journal of Financial and Quantitative Analysis, 2014, 49, 5-6, 1133  crossref(new windwow)
2.
Strong Convergence Properties for Asymptotically Almost Negatively Associated Sequence, Discrete Dynamics in Nature and Society, 2012, 2012, 1  crossref(new windwow)
 References
1.
Statist. Probab. Lett., 2000. vol.46. pp.105-112 crossref(new window)

2.
Stochastic Anal. Appl., 1987. vol.5. pp.365-377 crossref(new window)

3.
J. Theoret. Probab., 1995. vol.8. pp.625-641 crossref(new window)

4.
J. Theoret. Probab., 1995. vol.8. pp.49-76 crossref(new window)

5.
Statist. Probab. Lett., 1998. vol.40. pp.403-410 crossref(new window)

6.
Almost Sure Convergence, 1974.

7.
Statist. Probab. Lett., 2001. vol.52. pp.413-419 crossref(new window)

8.
Statist. Probab. Lett., 1999. vol.44. pp.19-22 crossref(new window)