JOURNAL BROWSE
Search
Advanced SearchSearch Tips
p-EQUIVARIANT SPINC-STRUCTURES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
p-EQUIVARIANT SPINC-STRUCTURES
Cho, Yong-Seung; Hong, Yoon-Hi;
  PDF(new window)
 Abstract
Let X be a closed, oriented, Riemannian 4-manifold with ${{b_2}^+}(x)\;>\;1$ and of simple type. Suppose that is an involution preserving orientation with an oriented, connected, compact 2-dimensional submanifold as a fixed point set with . We show that if then the bundle is not , where det is a basic class with .☊销Ѐ歡普᠀胭閜냫뎸蓭颸駭验
 Keywords
Seiberg-Witten invariant;; moduli space;equivariant Lefschetz number;
 Language
English
 Cited by
 References
1.
Annals of Mathematics, 1968. vol.88. pp.451-491 crossref(new window)

2.
Invent. Math., 1979. vol.54. pp.1-10 crossref(new window)

3.
Introduction to compact transformation groups, 1972. pp.1-10

4.
Math. Res. Lett., 1998. vol.5. pp.165-183 crossref(new window)

5.
Acta Math. Hungar., 1999. vol.84. 1-2, pp.97-114 crossref(new window)

6.
Acta Math. Hungar., 2002. vol.94. 4, pp.333-350 crossref(new window)

7.
The geometry of 4-manifolds, 1990.

8.
International Journal of Mathematics, 1998. vol.9. 8, pp.957-973 crossref(new window)

9.
Math. Res. Lett., 2001. vol.8. pp.279-291 crossref(new window)

10.
Math. Res. Lett., 1994. vol.1. pp.797-808 crossref(new window)

11.
J. Diff. Geo, 1996. vol.44. pp.706-788

12.
J. Differential Geom., 2000. vol.55. pp.385-440

13.
Annals of Math., 2000. vol.151. pp.93-124 crossref(new window)

14.
Comm. Anal. Geom., 2000. vol.8. 3, pp.477-515

15.
Lect. Notes in Math., 1978. vol.638.

16.
Math. Res. Lett., 1994. vol.1. pp.809-822 crossref(new window)