JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON INJECTIVITY AND P-INJECTIVITY, IV
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON INJECTIVITY AND P-INJECTIVITY, IV
Chi Ming, Roger Yue;
  PDF(new window)
 Abstract
This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).
 Keywords
Von Neumann regular;self injective rings;p-injectivity;YJ-injectivity;
 Language
English
 Cited by
1.
A Note on GP-Injectivity, Algebra Colloquium, 2009, 16, 04, 625  crossref(new windwow)
 References
1.
Rend. Sem. Mat. Univ. Padova, vol.72. pp.117-133

2.
Comm. Algebra, vol.23. pp.841-861 crossref(new window)

3.
AMS Math. Surveys and Monographs, vol.65.

4.
Ring Theory : Nonsingular rings and modules,

5.
Von Neumann regular rings,

6.
Publ. Math., vol.38. pp.455-461 crossref(new window)

7.
London Math. Soc. Monographs, vol.17. C.U.P.,

8.
Graduate Texts in Math., vol.189.

9.
London Math. Soc. Lecture Note Series, vol.147. C.U.P.,

10.
Journal of Algebra, vol.174. pp.77-93 crossref(new window)

11.
Glasgow Math. J., vol.37. pp.373-378 crossref(new window)

12.
Foundations of module and ring theory,

13.
Riv. Mat. Univ. Parma, vol.1. 6, pp.31-37

14.
Math. J. Okayama Univ., vol.28. pp.133-146

15.
Glasgow Math. J., vol.37. pp.21-31 crossref(new window)

16.
Proc. Edinburgh Math. Soc., vol.19. pp.89-91 crossref(new window)

17.
Math. Japonica, vol.19. pp.173-176

18.
Math. Scandinavica, vol.39. pp.167-170

19.
Math. J. Okayama Univ., vol.20. pp.123-129

20.
Rend. Sem. Mat. Univ. Torino, vol.39. pp.75-84

21.
Riv. Mat. Univ. Parma, vol.8. 4, pp.443-452

22.
Glasnik Mat., vol.18. 38, pp.221-229

23.
Annali di Mat., vol.138. pp.245-253 crossref(new window)

24.
Riv. Mat. Univ. Parma, vol.11. 4, pp.101-109

25.
Ann. Univ. Fenara, vol.31. pp.49-61

26.
J. Math. Kyoto Uni., vol.27. pp.439-452

27.
Acta Math. Vietnamica, vol.13. pp.71-79

28.
Riv. Mat. Univ. Parma, vol.4. 6,

29.
Canad. J. Math., vol.23. pp.1094-1101 crossref(new window)

30.
Algebra Colloquium, vol.6. pp.277-282