JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE EMPIRICAL LIL FOR THE KAPLAN-MEIER INTEGRAL PROCESS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE EMPIRICAL LIL FOR THE KAPLAN-MEIER INTEGRAL PROCESS
Bae, Jong-Sig; Kim, Sung-Yeun;
  PDF(new window)
 Abstract
We prove an empirical LIL for the Kaplan-Meier integral process constructed from the random censorship model under bracketing entropy and mild assumptions due to censoring effects. The main method in deriving the empirical LIL is to use a weak convergence result of the sequential Kaplan-Meier integral process whose proofs appear in Bae and Kim [2]. Using the result of weak convergence, we translate the problem of the Kaplan Meier integral process into that of a Gaussian process. Finally we derive the result using an empirical LIL for the Gaussian process of Pisier [6] via a method adapted from Ossiander [5]. The result of this paper extends the empirical LIL for IID random variables to that of a random censorship model.
 Keywords
Kaplan-Meier integral process;empirical LIL;sequential Kaplan-Meier integral process;empirical CLT;Gaussian process;
 Language
English
 Cited by
1.
UNIFORM ASYMPTOTICS IN THE EMPIRICAL MEAN RESIDUAL LIFE PROCESS,;;

대한수학회지, 2006. vol.43. 2, pp.225-239 crossref(new window)
 References
1.
J. Korean Math. Soc., 1996. vol.33. 4, pp.909-928

2.
Bull. Austral. Math. Soc., 2002.

3.
Z. Wahrsch. verw. Gebiete, 1983. vol.62. pp.509-552 crossref(new window)

4.
Ann. Probab, 1980. vol.8. pp.405-418 crossref(new window)

5.
Ann. Probab., 1987. vol.15. pp.897-919 crossref(new window)

6.
Seminaire Maurey-Schwarz 1975-1976 exposes Nos. 3 et 4, 1975.

7.
Springer series in Statistics, 1984.

8.
Ann. Statist., 1995. vol.23. pp.422-439 crossref(new window)

9.
Springer series in Statistics, 1996.