JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRALS AND FOURIER-FEYNMAN TRANSFORMS ON FUNCTION SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRALS AND FOURIER-FEYNMAN TRANSFORMS ON FUNCTION SPACE
Chang, Seung-Jun; Lee, Il-Yong;
  PDF(new window)
 Abstract
In this paper we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish a Fubini theorem for the function space integral and generalized analytic Feynman integral of a functional F belonging to Banach algebra and we proceed to obtain several integration formulas. Finally, we use this Fubini theorem to obtain several Feynman integration formulas involving analytic generalized Fourier-Feynman transforms. These results subsume similar known results obtained by Huffman, Skoug and Storvick for the standard Wiener process.
 Keywords
generalized Brownian motion process;generalized analytic Feynman integral;generalized analytic Fourier-Feynman transform;Fubinitheorem;
 Language
English
 Cited by
1.
A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRAL ON FUNCTION SPACE,;;;

대한수학회보, 2013. vol.50. 1, pp.217-231 crossref(new window)
1.
A new aspect of the analytic Fourier-Feynman transform and its applications, Integral Transforms and Special Functions, 2015, 26, 1, 65  crossref(new windwow)
2.
A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRAL ON FUNCTION SPACE, Bulletin of the Korean Mathematical Society, 2013, 50, 1, 217  crossref(new windwow)
3.
Some relationships for the double modified generalized analytic function space Fourier-Feynman transform and its applications, Mathematische Nachrichten, 2017, 290, 4, 520  crossref(new windwow)
 References
1.
A functional transform for Feynman integrals similar to the Fourier transforms,

2.
Michigan Math. J., vol.23. pp.1-30 crossref(new window)

3.
Lecture Notes in Math., vol.798. pp.18-67 crossref(new window)

4.
J. Korean Math. Soc., vol.19. pp.61-67

5.
Int. J. Math. Math. Sci., vol.29. pp.591-608 crossref(new window)

6.
Rocky Mountain J. Math., vol.26. pp.37-62 crossref(new window)

7.
Int. J. Math. Math. Sci., vol.23. pp.759-776 crossref(new window)

8.
Rocky Mountain J. Math., vol.30. pp.477-496 crossref(new window)

9.
Generalized Fourier-Feynman transforms and a first variation on function space, to appear in the Integral transforms and special functions,

10.
Pacific J. Math., vol.130. pp.27-40 crossref(new window)

11.
J. Korean Math. Soc., vol.38. pp.409-420

12.
J. Korean Math. Soc., vol.38. pp.421-435

13.
The Feynman Integral and Feynman's Operational Calculus,

14.
Michigan Math. J., vol.26. pp.103-127 crossref(new window)

15.
Pacific J. Math., vol.83. pp.157-176 crossref(new window)

16.
Stochastic processes and the Wiener integral,