A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRALS AND FOURIER-FEYNMAN TRANSFORMS ON FUNCTION SPACE Chang, Seung-Jun; Lee, Il-Yong;
Abstract
In this paper we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish a Fubini theorem for the function space integral and generalized analytic Feynman integral of a functional F belonging to Banach algebra and we proceed to obtain several integration formulas. Finally, we use this Fubini theorem to obtain several Feynman integration formulas involving analytic generalized Fourier-Feynman transforms. These results subsume similar known results obtained by Huffman, Skoug and Storvick for the standard Wiener process.
A new aspect of the analytic Fourier-Feynman transform and its applications, Integral Transforms and Special Functions, 2015, 26, 1, 65
2.
A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRAL ON FUNCTION SPACE, Bulletin of the Korean Mathematical Society, 2013, 50, 1, 217
3.
Some relationships for the double modified generalized analytic function space Fourier-Feynman transform and its applications, Mathematische Nachrichten, 2017, 290, 4, 520
References
1.
A functional transform for Feynman integrals similar to the Fourier transforms, 1972.
2.
Michigan Math. J., 1976.
vol.23.
pp.1-30
3.
Lecture Notes in Math., 1980.
vol.798.
pp.18-67
4.
J. Korean Math. Soc., 1982.
vol.19.
pp.61-67
5.
Int. J. Math. Math. Sci., 2002.
vol.29.
pp.591-608
6.
Rocky Mountain J. Math., 1996.
vol.26.
pp.37-62
7.
Int. J. Math. Math. Sci., 2000.
vol.23.
pp.759-776
8.
Rocky Mountain J. Math., 2000.
vol.30.
pp.477-496
9.
Generalized Fourier-Feynman transforms and a first variation on function space, to appear in the Integral transforms and special functions, 0000.
10.
Pacific J. Math., 1987.
vol.130.
pp.27-40
11.
J. Korean Math. Soc., 2001.
vol.38.
pp.409-420
12.
J. Korean Math. Soc., 2001.
vol.38.
pp.421-435
13.
The Feynman Integral and Feynman's Operational Calculus, 2000.
14.
Michigan Math. J., 1979.
vol.26.
pp.103-127
15.
Pacific J. Math., 1979.
vol.83.
pp.157-176
16.
Stochastic processes and the Wiener integral, 1973.